Skip to main content
Log in

Advanced oxidation process and biological treatments for table olive processing wastewaters: constraints and a novel approach to integrated recycling process: a review

  • Review Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Table olive processing wastewaters constitute a dangerous environmental problem in the Mediterranean countries because of their large volumes, high organic matter and salt concentration. The quantity and the characteristics of wastewaters produced, and thus, their environmental impact, varied depending on the season, varieties, soil and process employed. Several chemicals, biological and combined technologies have proven effective at bringing down organic pollution and toxicity of these effluents. Advanced oxidation processes have recognized as highly efficient treatments for the degradation of organic matter. Nonetheless, complete mineralization is generally expensive without salt removal. Biological processes are the most environmentally compatible and least-expensive treatment methods, but these operations do not always provide satisfactory results. This article surveys the current available technologies and suggests an effective, cheaper alternative for the recycling and the valorization of green table olives wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aggelis GG, Gavala HN, Lyberatos G (2001) Combined and separate aerobic and anaerobic biotreatment of green olive debittering wastewater. J Agric Eng Res 80(3):283–292

    Article  Google Scholar 

  • Aggelis G, Ehaliotis C, Nerud F, Stoychev I, Lyberatos G, Zervakis GI (2002) Evaluation of white-rot fungi for detoxification and decolorization of effluents from the green olive debittering process. Appl Microbiol Biotechnol 59:353–360

    Article  CAS  PubMed  Google Scholar 

  • Aggelisa G, Iconomoub D, Christouc M, Bokasa D, Kotzailiasa S, Christoua G, Tsagoua V, Papanikolaoua S (2003) Phenolic removal in a model olive oil mill wastewater using Pleurotus ostreatus in bioreactor cultures and biological evaluation of the process. Water Res 37:3897–3904

    Article  Google Scholar 

  • Alvarez-Pugliese CE, Marriaga-Cabrales N, Machuca-Martínez F (2014) A patent review of technologies for wastewater treatment by electrochemical oxidation with boron doped diamond electrodes. In: Martınez-Huitle CA (ed) Evaluation of electrochemical reactors as a new way to environmental protection. Research Signpost, Trivandrum, pp 77–94

    Google Scholar 

  • Asses N, Ayed L, Bouallagui H, Ben Rejeb I, Gargouri M, Hamdi M (2009) Use of Geotrichum candidum for olive mill wastewater treatment in submerged and static culture. Biores Technol 100:2182–2188

    Article  CAS  Google Scholar 

  • Ayed L, Hamdi M (2003) Fermentative decolorization of olive mill wastewater by Lactobacillus plantarum. Proc Biochem 39:59–65

    Article  Google Scholar 

  • Ayed L, Assas N, Sayadi S, Hamdi M (2005) Involvement of lignin peroxidase in the decolourization of black olive mill wastewaters by Geotrichum candidum. Lett Appl Microbiol 40:7–11

    Article  CAS  PubMed  Google Scholar 

  • Ayed L, Chammem N, Asses N, Hamdi M (2013) Optimization of biological pretreatment of green table olive processing wastewaters using Aspergillus niger. Biorem Biodegrad. doi:10.4172/2155-6199.1000212

    Google Scholar 

  • Ayed L, Asses N, Chammem N, Hamdi M (2015) Improvement of green table olive processing wastewater decolorization by Geotrichum candidum. Desalin Water Treat 57:1–11

    Google Scholar 

  • Bautista-Gallego J, Arroyo-López FN, Durán-Quintana MC, Garrido-Fernández A (2010) Fermentation profiles of Manzanilla-Alorena cracked green table olives indifferent chloride salt mixtures. Food Microbiol 27:403–412

    Article  CAS  PubMed  Google Scholar 

  • Bautista-Gallego J, Arroyo-López FN, Romero Gil V, Rodríguez Gómez F, García García P, Garrido Fernández A (2011) Chloride salt mixtures affect gordal cv. green spanish-style table olive fermentation. Food Microbiol 28:1316–1325

    Article  CAS  PubMed  Google Scholar 

  • Beltrán JF, Garcia-Araya FJ, Frades J, Alvarez P, Gimeno O (1999) Effects of single and combined ozonation with hydrogen peroxide or UV radiation on the chemical degradation and biodegradability of debittering table olive industrial wastewaters. Water Res 33:723–732

    Article  Google Scholar 

  • Beltrán J, Gonzalez T, Garcia J (2008) Kinetics of the biodegradation of green table olive wastewaters by aerobic and anaerobic treatments. J Hazard Mater 154(1–3):839–845

    Article  PubMed  Google Scholar 

  • Beltran-Heredia J, Torregrosa J, Dominguez JR, Garcia J (2000a) Aerobic biological treatment of black table olive washing wastewaters: effect of an ozonation stage. Process Biochem 35(2000):1183–1190

    Article  CAS  Google Scholar 

  • Beltran-Heredia J, Torregrosa J, Dominguez JR, Garcia J (2000b) Ozonation of black-table-olive industrial wastewaters: effect of an aerobic biological pretreatment. J Chem Technol Biotechnol 75(7):561–568

    Article  CAS  Google Scholar 

  • Beltran-Heredia J, Torregrosa J, Dominguez JR, Garcia J (2000c) Ozonation of black-table-olive industrial wastewaters: effect of an aerobic biological pretreatment. J Chem Technol Biotechnol 75:561–568

    Article  CAS  Google Scholar 

  • Beltran-Heredia J, Torregrosa J, Dominguez JR, Garcia J (2000d) Treatment of black olive wastewaters by ozonation and aerobic biological degradation. Water Res 34(14):3515–3522

    Article  CAS  Google Scholar 

  • Ben Othman N, Ayed L, Assas N, Kachouri F, Hammami M, Hamdi M (2008) Ecological removal of recalcitrant phenolic compounds of treated olive mill wastewater by Pediococcus pentosaceus. Bioresour Technol 99:2996–3001

    Article  CAS  PubMed  Google Scholar 

  • Ben Othman N, Roblain D, Chammen N, Thonart P, Hamdi M (2009) Antioxidant phenolic compounds loss during the fermentation of Chetoui olives. Food Chem 116:662–669

    Article  CAS  Google Scholar 

  • Benitez FJ, Acero JL, Gonzalez T, Garcia J (2001a) Ozonation and biodegradation processes in batch reactors treating black table olives washing wastewaters. Ind Eng Chem Res 40:3144–3151

    Article  CAS  Google Scholar 

  • Benitez FJ, Acero JL, Gonzalez T, Garcia J (2001b) Organic matter removal from wastewaters of the black olive industry by chemical and biological procedures. Proc Biochem 37:257–265

    Article  Google Scholar 

  • Benitez FJ, Beltran-Heredia J, Torregrosa J, Dominguez JR (2001c) Aerobic treatment of black olive wastewater and the effect of an ozonation stage. Bioprocess Eng 20:355–361

    Article  Google Scholar 

  • Benitez FJ, Acero JL, Gonzalez T, Garcia J (2002a) The use of ozone, ozone plus UV radiation, and aerobic microorganismsin the purification of some agroindustrial wastewaters. J Environ Eng Sci Health 37:1307–1325

    Article  Google Scholar 

  • Benitez FJ, Acero JL, Gonzalez T, Garcia J (2002b) Application of ozone and advanced oxidation processes to the treatment of lye-wastewaters from the table olives industry. Ozone Sci Eng 24:105–116

    Article  CAS  Google Scholar 

  • Bhargava SK, Tardio J, Prasad J, Foger K, Akolekar DB, Grocott SC (2006) Wet oxidation and catalytic wet oxidation. Ind Eng Chem Res 45:1221–1258

    Article  CAS  Google Scholar 

  • Brenes M, Rejano L, Garcia P, Sanchez AH, Garrido A (1995) Biochemical changes in phenolic compounds during spanish-style green olive processing. J Agric Food Chem 43(4):2702–2706

    Article  CAS  Google Scholar 

  • Brenes M, Garcia P, Romero C, Garrido A (2000) Treatment of green table olive waste waters by an activated-sludge process. J Chem Technol Biotechnol 75:459–463

    Article  CAS  Google Scholar 

  • Britto-Costa PH, Ruotolo LAM (2012) Phenol removal from wastewaters by electrochemical oxidation using boron doped diamond (BDD) and Ti/Ti0.7Ru0.3O2 dsa® electrodes. Braz J Chem Eng 29(4):763–773

    Article  CAS  Google Scholar 

  • Cańizares P, Lobato J, Paz R, Rodrigo MA, Saéz C (2007) Advanced oxidation processes for the treatment of olive-oil mills wastewater. Chemosphere 67:832–838

    Article  PubMed  Google Scholar 

  • Chammem N, Kachouri M, Mejri M, Peres C, Boudabous A, Hamdi M (2005) Combined effect of alkali pretreatment and sodium chloride addition on the olive fermentation process. Bioresour Technol 96:1311–1316

    Article  CAS  PubMed  Google Scholar 

  • Chatzisymeon E, Stypas E, Bousios S, Xekoukoulotakis NP, Mantzavinos D (2008) Photocatalytic treatment of black table olive processing wastewater. J Hazard Mater 154:1090–1097

    Article  CAS  PubMed  Google Scholar 

  • Chatzisymeon E, Xekoukoulotakis NP, Diamadopoulos E, Katsaounis A, Mantzavinos D (2009) Boron-doped diamond anodic treatment of olive mill wastewaters: statistical analysis, kinetic modeling and biodegradability. Water Res 43:3999–4009

    Article  CAS  PubMed  Google Scholar 

  • Comninellis C, Kapalka A, MalatoS Parsons SA, Poulios I, Mantzavinos D (2008) Perspective advanced oxidation processes for water treatment: advances and trends for R&D. J Chem Technol Biotechnol 83:769–776

    Article  CAS  Google Scholar 

  • Deligiorgis A, Xekoukoulotakis NP, Diamadopoulos E, Mantzavinos D (2008) Electrochemical oxidation of table olive processing wastewater over boron-doped diamond electrodes: treatment optimization by factorial design. Water Res 42(4–5):1229–1237

    Article  CAS  PubMed  Google Scholar 

  • Della Monica M, Agostiano A, Potenz D, Righetti E, Volpicella M (1980) Degradation treatment of wastewater from olive processing. Water Air Soil Pollut 3:251–256

    Article  Google Scholar 

  • Ferrer-Polonio E, Mendoza-Roca JA, Iborra-Clar A, Alonso-MolinaJL Pastor-Alcañiz L (2015) Comparison of two strategies for the start-up of a biological reactor for the treatment of hypersaline effluents from a table olive packaging industry. Chem Eng J 273:595–602

    Article  CAS  Google Scholar 

  • Garrido Fernàndez A, Fernàndez Diez MJ (1997) Table olives, production and processing. Chapman & Hall, London

    Book  Google Scholar 

  • Gogate PR, Pandit AB (2004) A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv Environ Res 8:501–551

    Article  CAS  Google Scholar 

  • International Olive Oil Council (IOOC) (2015) Statistic of table olive’s world production. http://www.internationaloliveoil.org/downloads/production3_ang.PDF

  • Kachouri F, Hamdi M (2004) Enhancement of polyphenols in olive oil by contact with fermented olive mill wastewater by Lactobacillus plantarum. Proc Biochem 39(7):841–845

    Article  CAS  Google Scholar 

  • Kargi F, Dincer AR, Pala A (2000) Characterization and biological treatment of pickling industry wastewater. Bioprocess Eng 23(4):371–374

    Article  CAS  Google Scholar 

  • Katsoni A, Frontistis Z, Xekoukoulotakis NP, Diamadopoulos E, Mantzavinos D (2008) Wet air oxidation of table olive processing wastewater: determination of key operating parameters by factorial design. Water Res 42:3591–3600

    Article  CAS  PubMed  Google Scholar 

  • Kopsidas GC (1992) Wastewater from the preparation of table olives. Water Res 26:629–631

    Article  CAS  Google Scholar 

  • Kotsou M, Kyriacou A, Lasaridi K, Pilidis G (2004) Integrated aerobic biologicalreatment and chemical oxidation with Fenton’s reagent for the processing of green table olive wastewater. Proc Biochem 39(11):1653–1660

    Article  CAS  Google Scholar 

  • Kyriacou A, Lasaridi L, Kotsou M, Balis C, Pilidis G (2005) Combined bioremediation and advanced oxidation of green table olive processing wastewater. Proc Biochem 40(3):1401–1408

    Article  CAS  Google Scholar 

  • Landete JM, Curiel JA, Rodríguez H, de las Rivas B, Muñoz R (2008) Study of the inhibitory activity of phenolic compounds found in olive products and their degradation by Lactobacillus plantarum strains. Food Chem 107:320–326

    Article  CAS  Google Scholar 

  • Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  • Luck F (1999) Wet air oxidation: past, present and future. Catal Today 53:81–91

    Article  CAS  Google Scholar 

  • Marselli B, Garcia-Gomez J, Michaud PA, Rodrigo MA, Comninellis C (2003) Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. J Electrochem Soc 150(3):D79–83

    Article  CAS  Google Scholar 

  • Marsilio V, Lanza B (1998) Characterization of an oleuropein degrading strain of Lactobacillus plantarum. Combined effects of compounds present in olive fermenting brines (phenols, glucose and NaCl) on bacterial activity. J Sci Food Agric 76:520–524

    Article  CAS  Google Scholar 

  • Marsilio V, Campestre C, Lanza B (2001) Phenolic compounds change during California-style ripe olive processing. Food Chem 74(1):55–60

    Article  CAS  Google Scholar 

  • Martirani L, Giardina P, Marzullo L, Sannia G (1996) Reduction of phenol content and toxicity in olive oil mill waste waters with the ligninolytic fungus Pleurotus ostreatus. Water Res 30(8):1914–1918

    Article  CAS  Google Scholar 

  • Mohajerani M, Mehrvar M, Ein-Mozaffari F (2009) An overview of the integration of advanced oxidation technologies and other processes for water and wastewater treatment. Int J Eng 3(2):120–147

    Google Scholar 

  • Muñoz I, Domenech X, Malato S (2006) Life cycle assessment as a tool for green chemistry: application to different advanced oxidation processes for wastewater treatment. CIEMAT, Madrid. ISBN 84-7834-520-5

    Google Scholar 

  • Oller I, Malato S, Sánchez-Pérez JA (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Sci Total Environ 409:4141–4166

    Article  CAS  PubMed  Google Scholar 

  • Paraskeva P, Diamadopoulos E (2006) Technologies for olive mill wastewater (OMW) treatment: a review. J Chem Technol Biotechnol 81:1475–1485

    Article  CAS  Google Scholar 

  • Parinos CS, Stalikas CD, Giannopoulos TS, Pilidis GA (2007) Chemical and physicochemical profile of wastewaters produced from the different stages of Spanish-style green olives. J Hazard Mater 145:339–343

    Article  CAS  PubMed  Google Scholar 

  • Ramos-Cormenzana A, Juarez-Jimenez B, Garcia-Pareja MP (1996) Antimicrobial activity of olive mill waste-waters (alpechin) and biotransformed olive oil mill wastewater. Int Biodeterior Biodegrad 38:283–290

    Article  Google Scholar 

  • Rivas FJ, Beltran FJ, Gimeno O, Alvarez P (2001) Chemical-biological treatment of table olive manufacturing wastewater. J Environ Eng 127:611–619

    Article  CAS  Google Scholar 

  • Rivas JF, Beltran FJ, Gimeno O, Alvarez P (2003) Optimisation of Fenton’s reagent usage as a pre-treatment for fermentation brines. J Hazard Mater 96:277–290

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez H, Curiel JA, Landete JM, de las Rivas B, de Felipe FL, Gómez-Cordovés C, Mancheño JM, Muñoz R (2009) Review food phenolics and lactic acid bacteria. Int J Food Microbiol 132:79–90

    Article  PubMed  Google Scholar 

  • Romero Barranco C, Brenes Balbuena M, Garcia-Garcia P, Garrido Fernandez A (2001) Management of spent brines or osmotic solutions. J Food Eng 49:237–246

    Article  Google Scholar 

  • Segovia-Bravo KA, Arroyo-López FN, García P, Durán-Quintana MC, Garrido-Fernández A (2007) Treatment of green table olive solutions with ozone. Effect on their polyphenol content and on Lactobacillus pentosus and Saccharomyces cerevisiae growth. Int J Food Microbiol 114:60–68

    Article  CAS  PubMed  Google Scholar 

  • Tatoulis TI, Stefanakis A, Frontistis Z, Akratos CS, Tekerlekopoulou AG, Mantzavinos D, Vayenas DV (2016a) Advances and trends in advanced oxydation processes treatment of table olive washing water using trickling filters, constructed wetlands and electrooxidation. Environ Sci Pollut Res. doi:10.1007/s11356-016-7058-6

    Google Scholar 

  • Tatoulis TI, Zapantiotis S, Frontistis Z, Akratos CS, Tekerlekopoulou AG, Pavlou S, Mantzavinos D, Vayenas DV (2016b) Hybrid system comprising an aerobic biological process and electrochemical oxidation for the treatment of black table olive processing wastewaters. Int Biodeterior Biodegrad 109:104–112

    Article  CAS  Google Scholar 

  • Tsagaraki E, Lazarides HN, Petrotos KB (2006) Olive mill wastewater treatment. In: Oreopoulou V (ed) Utilization of by-products and treatment of waste in the food industry. Springer, New York, pp 133–157

    Google Scholar 

  • Tsioulpas A, Dimou D, Ikonomou D, Aggelis G (2002) Phenolic removal in olive oil mill waste-water by strains of Pleurotus spp. in respect to their phenol oxidase (laccase) activity. Bioresour Technol 84:251–257

    Article  CAS  PubMed  Google Scholar 

  • Tsonis S, Grigoropoulos S (1993) Anaerobic treatability of olive oil mill wastewater. Water Sci Technol 28:35–44

    CAS  Google Scholar 

  • Unal K, Nergiz C (2003) The effect of table olive preparing methods and storage on the composıtıon and nutrıtıve value of olives. Grasas Aceites 54(1):71–76

    Article  Google Scholar 

  • Zaviska F, Drogui P, Mercier G, Blais JF (2009) Procédés d’oxydation avancée dans le traitement des eaux et des effluents industriels: application à la dégradation des polluants réfractaires. Rev Sci Eau 22(4):535–564

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lamia Ayed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayed, L., Asses, N., Chammem, N. et al. Advanced oxidation process and biological treatments for table olive processing wastewaters: constraints and a novel approach to integrated recycling process: a review. Biodegradation 28, 125–138 (2017). https://doi.org/10.1007/s10532-017-9782-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-017-9782-0

Keywords

Navigation