Skip to main content
Log in

Assessment of biostimulation and bioaugmentation for removing chlorinated volatile organic compounds from groundwater at a former manufacture plant

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Site in a former chemical manufacture plant in China was found contaminated with high level of chlorinated volatile organic compounds (CVOCs). The major contaminants chloroform (CF), 1,2-dichloroethane (1,2-DCA) and vinyl chloride (VC) in groundwater were up to 4.49 × 104, 2.76 × 106 and 4.35 × 104 μg/L, respectively. Ethene and methane were at concentrations up to 2219.80 and 165.85 μg/L, respectively. To test the hypothesis that the CVOCs in groundwater at this site could be removed via biodegradation, biomarker analyses and microcosm studies were conducted. Dehalococcoides 16S rRNA gene and VC-reductase gene vcrA at densities up to 1.5 × 104 and 3.2 × 104 copies/L were detected in some of the groundwater samples, providing strong evidence that dechlorinating bacteria were present in the aquifer. Results from the microcosm studies showed that at moderate concentrations (CF about 4000 μg/L and 1,2-DCA about 100 μg/L), CF was recalcitrant under natural condition but was degraded under biostimulation and bioaugmentation, while 1,2-DCA was degraded under all the three conditions. At high concentration (CF about 1,000,000 μg/L and 1,2-DCA about 20,000 μg/L), CF was recalcitrant under all the three treatments and 1,2-DCA was only degraded under bioaugmentation, indicating that high concentrations of contaminants were inhibitory to the bacteria. Electron donors had influence on the degradation of contaminants. Of the four fatty acids (pyruvate, acetate, propionate and lactate) examined, all could stimulate the degradation of 1,2-DCA at both moderate and high concentrations, whereas only pyruvate and acetate could stimulate the degradation of CF at moderate concentration. In the microcosms, the observed first-order degradation rates of CF and 1,2-DCA were up to 0.12 and 0.11/day, respectively. Results from the present study provided scientific basis for remediating CVOCs contaminated groundwater at the site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amann RI, Ludwig W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aronson D, Howard P (1997) Anaerobic biodegradation of organic chemicals in groundwater: a summary of field and laboratory studies (SRC TR-96-0223F). Environmental Science Center, Syracuse Research Corporation, NY

  • Behrens S, Azizian MF, McMurdie PJ, Sabalowsky A, Dolan ME, Semprini L, Spormann AM (2008) Monitoring abundance and expression of “Dehalococcoides” species chloroethene-reductive dehalogenases in a tetrachloroethene-dechlorinating flow column. Appl Environ Microbiol 74:5695–5703. doi:10.1128/aem.00926-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruton TA, Pycke BFG, Halden RU (2015) Effect of Nanoscale Zero-Valent Iron Treatment on Biological Reductive Dechlorination: a Review of Current Understanding and Research Needs. Critical Reviews in Environmental Science and Technology 45:1148–1175. doi:10.1080/10643389.2014.924185

    Article  Google Scholar 

  • Carreón-Diazconti C, Santamaría J, Berkompas J, Field JA, Brusseau ML (2009) Assessment of in situ reductive dechlorination using compound-specific stable isotopes, functional gene PCR, and geochemical data. Environ Sci Technol 43:4301–4307

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheung K, Gu J-D (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeterior Biodegrad 59:8–15

    Article  CAS  Google Scholar 

  • Chu K-H, Mahendra S, Song DL, Conrad ME, Alvarez-Cohen L (2004) Stable carbon isotope fractionation during aerobic biodegradation of chlorinated ethenes. Environ Sci Technol 38:3126–3130

    Article  CAS  PubMed  Google Scholar 

  • Cope N, Hughes JB (2001) Biologically-enhanced removal of PCE from NAPL source zones. Environ Sci Technol 35:2014–2021. doi:10.1021/es0017357

    Article  CAS  PubMed  Google Scholar 

  • Da Silva MLB, Alvarez PJJ (2008) Exploring the Correlation between Halorespirer Biomarker Concentrations and TCE Dechlorination Rates. J Environ Eng 134:895–901. doi:10.1061/(asce)0733-9372(2008)134:11(895)

    Article  Google Scholar 

  • Fennell DE, Carroll AB, Gossett JM, Zinder SH (2001) Assessment of indigenous reductive dechlorinating potential at a TCE-contaminated site using microcosms, polymerase chain reaction analysis, and site data. Environ Sci Technol 35:1830–1839

    Article  CAS  PubMed  Google Scholar 

  • Field J, Sierra-Alvarez R (2004) Biodegradability of chlorinated solvents and related chlorinated aliphatic compounds. Reviews in Environmental Science and Bio/Technology 3:185–254

    Article  CAS  Google Scholar 

  • Gedalanga PB, Pornwongthong P, Mora R, Chiang S-YD, Baldwin B, Ogles D, Mahendra S (2014) Identification of biomarker genes to predict biodegradation of 1, 4-dioxane. Appl Environ Microbiol 80:3209–3218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghiorse WC, Wilson JT (1988) Microbial ecology of the terrestrial subsurface. Adv Appl Microbiol 33:107

    Article  CAS  PubMed  Google Scholar 

  • Giddings CGS, Liu F, Gossett JM (2010) Microcosm Assessment of Polaromonas sp. JS666 as a Bioaugmentation Agent for Degradation of cis-1,2-dichloroethene in Aerobic, Subsurface Environments. Ground Water Monit Rem 30:106–113. doi:10.1111/j.1745-6592.2010.01283.x

    Article  CAS  Google Scholar 

  • Grostern A, Edwards EA (2009) Characterization of a Dehalobacter coculture that dechlorinates 1, 2-dichloroethane to ethene and identification of the putative reductive dehalogenase gene. Appl Environ Microbiol 75:2684–2693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grostern A, Duhamel M, Dworatzek S, Edwards EA (2010) Chloroform respiration to dichloromethane by a Dehalobacter population. Environ Microbiol 12:1053–1060

    Article  CAS  PubMed  Google Scholar 

  • He J, Ritalahti KM, Yang K-L, Koenigsberg SS, Löffler FE (2003) Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 424:62–65

    Article  CAS  PubMed  Google Scholar 

  • Hendrickson ER et al (2002) Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. Appl Environ Microbiol 68:485–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirschorn SK et al (2007) Quantification of biotransformation of chlorinated hydrocarbons in a biostimulation study: added value via stable carbon isotope analysis. J Contam Hydrol 94:249–260. doi:10.1016/j.jconhyd.2007.07.001

    Article  CAS  PubMed  Google Scholar 

  • Krajmalnik-Brown R, Hölscher T, Thomson IN, Saunders FM, Ritalahti KM, Löffler FE (2004) Genetic identification of a putative vinyl chloride reductase in Dehalococcoides sp. strain BAV1. Appl Environ Microbiol 70:6347–6351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MD (1996) Intrinsic bioremediation of 1,2-dichloroethane, In: Symposium on Natural Attenuation of Chlorinated Organics in Ground Water, USEPA, EPA/540/R-96/509

  • Lee PK, Macbeth TW, Sorenson KS, Deeb RA, Alvarez-Cohen L (2008) Quantifying genes and transcripts to assess the in situ physiology of “Dehalococcoides” spp. in a trichloroethene- contaminated groundwater site. Appl Environ Microbiol 74:2728–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Li G, Tao S, Bosma TNP, Gerritse J (2002) Volatile fatty acids as electron donors for the reductive dechloirnation of chloroethenes. Journal of Environmental Science & Health, A 37(4):439–449

    Article  Google Scholar 

  • Lu X, Wilson JT, Kampbell DH (2006a) Relationship between Dehalococcoides DNA in ground water and rates of reductive dechlorination at field scale. Water Res 40:3131–3140

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Wilson JT, Kampbell DH (2006b) Relationship between geochemical parameters and the occurrence of Dehalococcoides DNA in contaminated aquifers. Water Resour Res 42:W08427

    Google Scholar 

  • Lu X, Wilson JT, Kampbell DH (2009) Comparison of an assay for Dehalococcoides DNA and a microcosm study in predicting reductive dechlorination of chlorinated ethenes in the field. Environ Pollut 157:809–815

    Article  CAS  PubMed  Google Scholar 

  • Marzorati M et al (2007) A novel reductive dehalogenase, identified in a contaminated groundwater enrichment culture and in Desulfitobacterium dichloroeliminans strain DCA1, is linked to dehalogenation of 1, 2-dichloroethane. Appl Environ Microbiol 73:2990–2999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattes TE, Alexander AK, Coleman NV (2010) Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution. FEMS Microbiol Rev 34:445–475

    Article  CAS  PubMed  Google Scholar 

  • Maymo-Gatell X, Y-t Chien, Gossett JM, Zinder SH (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276:1568–1571

    Article  CAS  PubMed  Google Scholar 

  • Maymó-Gatell X, Anguish T, Zinder SH (1999) Reductive dechlorination of chlorinated ethenes and 1, 2-dichloroethane by “Dehalococcoides ethenogenes” 195. Appl Environ Microbiol 65:3108–3113

    PubMed  PubMed Central  Google Scholar 

  • McGuire TM, McDade JM, Newell CJ (2006) Performance of DNAPL source depletion technologies at 59 chlorinated solvent-impacted sites. Ground Water Monit Rem 26:73–84. doi:10.1111/j.1745-6592.2006.00054.x

    Article  CAS  Google Scholar 

  • Mikesell MD, Boyd SA (1990) Dechlorination of chloroform by Methanosarcina strains. Appl Environ Microbiol 56:1198–1201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moran MJ, Zogorski JS, Squillace PJ (2007) Chlorinated solvents in groundwater of the United States. Environ Sci Technol 41:74–81. doi:10.1021/es061553y

    Article  CAS  PubMed  Google Scholar 

  • Müller JA, Rosner BM, Von Abendroth G, Meshulam-Simon G, McCarty PL, Spormann AM (2004) Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp. strain VS and its environmental distribution. Appl Environ Microbiol 70:4880–4888

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelson AD, Schmitt RJ, Dickeson D (1997) Upgrading the performance of groundwater VOC air strippers. Environ Prog 16:43–46

    Article  CAS  Google Scholar 

  • Newell CJ, Rifai HS, Wilson JT, Connor JA, Aziz JA, Suarez MP (2002) Calculation and use of first-order rate constants for monitored natural attenuation studies. Ground Water Issue, USEPA, EPA/540/S-02/500

  • Pollice A, Rozzi A, Tomei MC, Di Pinto AC, Laera G (2001) Inhibiting effects of chloroform on anaerobic microbial consortia as monitored by the rantox biosensor. Water Res 35:1179–1190

    Article  CAS  PubMed  Google Scholar 

  • Puls RW, Blowes DW, Gillham RW (1999) Long-term performance monitoring for a permeable reactive barrier at the US Coast Guard Support Center, Elizabeth City, North Carolina. J Hazard Mater 68:109–124. doi:10.1016/s0304-3894(99)00034-5

    Article  CAS  PubMed  Google Scholar 

  • Rhee E, Speece R (1992) Maximal biodegradation rates of chloroform and trichloroethylene in anaerobic treatment. Water Sci Technol 25:121–130

    CAS  Google Scholar 

  • Ritalahti KM, Amos BK, Sung Y, Wu Q, Koenigsberg SS, Löffler FE (2006) Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Appl Environ Microbiol 72:2765–2774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders F et al (1996) Results of laboratory microcosm studies of the anaerobic biodegradation of chloroform in subsurface environments. NCASI Technical Bulletin No. 716, Research Triangle Park, NC

  • Scheutz C, Durant ND, Dennis P, Hansen MH, Jorgensen T, Jakobsen R, Cox EE, Bjerg PL (2008) Concurrent ethene generation and growth of Dehalococcoides containing vinyl chloride reductive dehalogenase genes during an enhanced reductive dechlorination field demonstration. Environ Sci Technol 42(24):9302–9309

    Article  CAS  PubMed  Google Scholar 

  • Suarez MP, Rifai HS (1999) Biodegradation rates for fuel hydrocarbons and chlorinated solvents in groundwater. Bioremediation J 3:337–362

    Article  CAS  Google Scholar 

  • van der Zaan B, Hannes F, Hoekstra N, Rijnaarts H, de Vos WM, Smidt H, Gerritse J (2010) Correlation of Dehalococcoides 16S rRNA and chloroethene-reductive dehalogenase genes with geochemical conditions in chloroethene-contaminated groundwater. Appl Environ Microbiol 76:843–850

    Article  PubMed  Google Scholar 

  • Waller AS, Krajmalnik-Brown R, Löffler FE, Edwards EA (2005) Multiple reductive-dehalogenase-homologous genes are simultaneously transcribed during dechlorination by Dehalococcoides-containing cultures. Appl Environ Microbiol 71:8257–8264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J-S, Baek K, Kwon T-S, Yang J-W (2009) Adsorption of chlorinated solvents in nonionic surfactant solutions with activated carbon in a fixed bed. J Ind Eng Chem 15:777–779. doi:10.1016/j.jiec.2009.09.027

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Nature Science Foundation of China (41471391, 40871214, 40830746), the Fok Ying Tung Education Foundation via the Ministry of Education, China (114043), and Ministry of Education Program for New Century Excellent Talents in University (NCET-10-0200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu Zhang or Xiao-xia Lu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1597 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Hou, Z., Du, Xm. et al. Assessment of biostimulation and bioaugmentation for removing chlorinated volatile organic compounds from groundwater at a former manufacture plant. Biodegradation 27, 223–236 (2016). https://doi.org/10.1007/s10532-016-9768-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-016-9768-3

Keywords

Navigation