Skip to main content
Log in

Yarrowia lipolytica NCIM 3589, a tropical marine yeast, degrades bromoalkanes by an initial hydrolytic dehalogenation step

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The widespread industrial use of organobromines which are known persistent organic pollutants has led to their accumulation in sediments and water bodies causing harm to animals and humans. While degradation of organochlorines by bacteria is well documented, information regarding degradation pathways of these recalcitrant organobromines is scarce. Hence, their fates and effects on the environment are of concern. The present study shows that a tropical marine yeast, Yarrowia lipolytica NCIM 3589 aerobically degrades bromoalkanes differing in carbon chain length and position of halogen substitution viz., 2-bromopropane (2-BP), 1-bromobutane (1-BB), 1,5 dibromopentane (1,5-DBP) and 1-bromodecane (1-BD) as seen by an increase in cell mass, release of bromide and concomitant decrease in concentration of brominated compound. The amount of bromoalkane degraded was 27.3, 21.9, 18.0 and 38.3 % with degradation rates of 0.076, 0.058, 0.046 and 0.117/day for 2-BP, 1-BB, 1,5-DBP and 1-BD, respectively. The initial product formed respectively were alcohols viz., 2-propanol, 1-butanol, 1-bromo, 5-pentanol and 1-decanol as detected by GC–MS. These were further metabolized to fatty acids viz., 2-propionic, 1-butyric and 1-decanoic acid eventually leading to carbon dioxide formation. Neither higher chain nor brominated fatty acids were detected. An inducible extracellular dehalogenase responsible for removal of bromide was detected with activities of 21.07, 18.82, 18.96 and 26.67 U/ml for 2-BP, 1-BB, 1,5-DBP and 1-BD, respectively. We report here for the first time the proposed aerobic pathway of bromoalkane degradation by an eukaryotic microbe Y. lipolytica 3589, involving an initial hydrolytic dehalogenation step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allard A-S, Nielson AH (2003) Degradation and transformation of organic bromine and iodine compounds: comparison with their chlorinated analogues. In: Nielson AH (ed) The handbook of environmental chemistry, vol 3R. Springer, Berlin

    Google Scholar 

  • Bankar AV, Kumar AR, Zinjarde SS (2009) Environmental and industrial applications of Yarrowia lipolytica. Appl Microbiol Biotechnol 84:847–865

    Article  CAS  PubMed  Google Scholar 

  • Barth G, Gaillardin C (1997) Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiol Rev 19:219–237

    Article  CAS  PubMed  Google Scholar 

  • Bhadbhade BJ, Sarnaik SS, Kanekar PP (2002) Biomineralization of an organophosphorous pesticide, monocrotophos, by a soil bacteria. J Appl Microbiol 93:224–234

    Article  CAS  PubMed  Google Scholar 

  • Central Pollution Control Board (CPCB) Annual Report (2008–2009). Ministry of environment and forests, Government of India, pp 103–104

  • Cousins IT, Palm A (2003) Physical-chemical properties and estimated environmental fate of brominated and iodinated organic compounds. In: Nielson AH (ed) The handbook of environmental chemistry, vol 3R. Springer, Berlin, p 301

    Google Scholar 

  • Curragh H, Flynn O, Larkin MJ, Stafford TM, Hamilton JTG, Harper DB (1994) Haloalkane degradation and assimilation by Rhodococcus rhodochrous NCIMB 13064. Microbiol 140:1433–1442

    Article  CAS  Google Scholar 

  • Darnerud PO (2003) Toxic effects of brominated flame retardants in man and in wildlife. Environ Int 29:841–853

    Article  CAS  PubMed  Google Scholar 

  • DePierre JW (2003) Mammalian toxicity of organic compounds of bromine and iodine. In: Nielson AH (ed) The handbook of environmental chemistry, vol 3R. Springer, Berlin

    Google Scholar 

  • Fetzner S (2010) Aerobic degradation of halogenated aliphatics. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin

    Google Scholar 

  • Fetzner S, Lingens F (1994) Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications. Microbiol Rev 58:641–685

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fortova A, Sebestova E, Stephankova V, Koudelakova T, Palkova L, Damborsky J, Chaloupkova R (2013) DspA from Stronglocentrotus purouratus: the first biochemically characterized haloalkane dehalogenase of non-microbial origin. Biochimie 95:2091–2096

    Article  CAS  PubMed  Google Scholar 

  • Green NA, Meharg AA, Till C, Troke J, Nicholson JK (1999) Degradation of 4-fluorobiphenyl by mycorrhizal fungi as determined by 19F nuclear magnetic resonance spectroscopy and 14C radiolabelling analysis. Appl Environ Microbiol 65:4021–4027

    PubMed Central  CAS  PubMed  Google Scholar 

  • Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev 9:177–192

    CAS  Google Scholar 

  • Hasan K, Fortova A, Koudelakova T, Chaloupkova R, Ishitsuka M, Nagata Y, Damborsky J, Prokop Z (2011) Biochemical characteristics of the novel haloalkane dehalogenase data, isolated from the plant pathogen Agrobacterium tumefaciens C58. Appl Environ Microbiol 77(5):1881–1884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hesseler M, Bogdanovic X, Hidalgo A, Berenguer J, Palm GJ, Hinrichs W, Bornscheuer UT (2011) Cloning, functional expression, biochemical characterization and structural analysis of a haloalkane dehalogenase from Plesiocystis pacifica SIR-1. Appl Microbiol Biotechnol 91:1049–1060

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki I, Utsumi S, Ozawa T (1952) New colorimetric determination of chloride using mercuric thiocyanate and ferric ion. Bull Chem Soc Jpn 25:226

    Article  CAS  Google Scholar 

  • Janssen DB, Scheper A, Dijkhuizen L, Witholt B (1985) Degradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ1O. Appl Environ Microbiol 49:673–677

    PubMed Central  CAS  PubMed  Google Scholar 

  • Janssen DB, Oppentocht JE, Poelarends GJ (2001) Microbial dehalogenation. Curr Opin Biotechnol 12:254–258

    Article  CAS  PubMed  Google Scholar 

  • Jesenska A, Sedlacek I, Damborsky J (2000) Dehalogenation of haloalkanes by Mycobacterium tuberculosis H37Rv and other mycobacteria. Appl Environ Microbiol 66:219–222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Katre G, Joshi C, Khot M, Zinjarde S, RaviKumar A (2012) Evaluation of single cell oil (SCO) from a tropical marine yeast Yarrowia lipolytica NCIM 3589 as a potential feedstock for biodiesel. AMB Express 2:36

    Article  PubMed Central  PubMed  Google Scholar 

  • Kennedy DW, Aust SD, Bumpus JA (1990) Comparative biodegradation of alkyl halide insecticides by the white rot fungus, Phanerochaete chrysosporium (BKM-F-1767). Appl Environ Microbiol 56(8):2347–2353

    PubMed Central  CAS  PubMed  Google Scholar 

  • National report (2014) For the Workshop, under the Auspices of the United Nations, in Support of the Regular Process for Global Reporting and Assessment of the State of the Marine Environment, Including Socio-economic Aspects, Chennai, India

  • Nikel PI, Pe´rez-Pantoja D, de Lorenzo V (2013) Why are chlorinated pollutants so difficult to degrade aerobically? Redox stress limits 1,3-dichloprop-1-ene metabolism by Pseudomonas pavonaceae. Philos Trans R Soc B 368:20120377

    Article  Google Scholar 

  • Novak HR, Sayer C, Isupov MN, Gotz D, Spragg AM, Littlechild JA (2014) Biochemical and structural characterization of a haloalkane dehalogenase from a marine Rhodobacteraceae. FEBS Lett 588(9):1616–1622

    Article  CAS  PubMed  Google Scholar 

  • Okpokwasili GC, Nweke CO (2005) Microbial growth and substrate utilization kinetics. Afr J Biotechnol 5:305–317

    Google Scholar 

  • Poelarends GJ, van Hylckama Vlieg JET, Marchesi JR, Dos Santos LMF, Janssen DB (1999) Degradation of 1,2-dibromoethane by Mycobacterium sp. Strain GP1. J Bacteriol 181(7):2050–2058

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white rot fungi. Appl Microbiol Biotechnol 57:20–33

    Article  CAS  PubMed  Google Scholar 

  • Reineke W (2001) Aerobic and anaerobic biodegradation potentials of microorganisms. In: Beek B (ed) The handbook of environmental chemistry. Biodegradation and persistence, vol 2. Springer, Berlin, pp 1–161

    Chapter  Google Scholar 

  • Sfetsas CC, Milios L, Skopelitou K, Venieraki A, Todou R, Flemtakis E, Katinakis P, Labrous NE (2009) Characterization of 1,2-dibromomethane degrading haloalkane dehalogenase from Bradyrhizobium japonicum USDA110. Enzyme Microb Technol 45:397–404

    Article  CAS  Google Scholar 

  • Shochat E, Hermoni I, Cohen Z, Abeliovich A, Belkin S (1993) Bromoalkane-degrading Pseudomonas strains. Appl Environ Microbiol 59:1403–1409

    PubMed Central  CAS  PubMed  Google Scholar 

  • Singh H (2006) Mycoremediation: fungal bioremediation. Wiley, Hoboken

    Book  Google Scholar 

  • Singh ON, Fabian P (1999) Reactive bromine compounds. In: Singh ON, Fabian P (eds) Reactive halogen compounds in the atmosphere. The handbook of environmental chemistry, vol 4E. Springer, Berlin, p 1

    Chapter  Google Scholar 

  • Smidt H, de Vos WM (2004) Anaerobic microbial dehalogenation. Annu Rev Microbiol 58:43–73

    Article  CAS  PubMed  Google Scholar 

  • Swanson PE (1999) Dehalogenases applied to industrial-scale biocatalysis. Curr Opin Biotechnol 10:365–369

    Article  CAS  PubMed  Google Scholar 

  • Vatsal A, Zinjarde SS, Kumar AR (2011) Growth of a tropical marine yeast Yarrowia lipolytica NCIM 3589 on bromoalkanes: relevance of cell size and cell surface properties. Yeast 28:721–732

    Article  CAS  PubMed  Google Scholar 

  • Vogel TM, Reinhard M (1986) Reaction products and rates of disappearance of simple bromoalkanes, 1,2-dibromopropane, and 1,2-dibromoethane in water. Environ Sci Technol 20:992–997

    Article  CAS  PubMed  Google Scholar 

  • Yokota T, Omori T, Kodama T (1987) Purification and properties of haloalkane dehalogenase from Corynebacterium sp. strain m15-3. J Bacteriol 169:4049–4054

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zinjarde S, Apte M, Mohite P, Kumar AR (2014) Yarrowia lipolytica and pollutants: interactions and applications. Biotechnol Adv 32:920–933

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University for infrastructural support provided to carry out this work. AV thanks IBB for financial support.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ameeta Ravi Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 303 kb)

Supplementary material 2 (DOC 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vatsal, A., Zinjarde, S.S. & Kumar, A.R. Yarrowia lipolytica NCIM 3589, a tropical marine yeast, degrades bromoalkanes by an initial hydrolytic dehalogenation step. Biodegradation 26, 127–138 (2015). https://doi.org/10.1007/s10532-015-9721-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-015-9721-x

Keywords

Navigation