Skip to main content
Log in

Structural integrity affects nitrogen removal activity of granules in semi-continuous reactors

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Granules were observed after more than two years of operation in two semi-continuously fed intermittently aerated reactors treating swine wastewater with aerobic:anoxic cycles of 1:1 h and 1:4 h. Subsequently, the granules and flocs were compared with respect to physical characteristics, activity, and microbial community structure. Granules exhibited higher specific nitrification and denitrification rates than flocs. However, once granule structural integrity was disrupted, the rates decreased to levels similar to those of flocs. Membrane hybridizations using 16S rRNA-targeted probes showed that ammonia oxidizing bacteria populations in flocs and granules were dominated by Nitrosomonas and Nitrosococcus mobilis. Granules provided better conditions for Nitrospira compared to flocs. The diversities of the dominant bacterial populations in granules and flocs were not significantly different. Our findings highlight the importance of structural integrity of granules to their nitrogen removing activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

X f :

VSS concentration in the IA reactor attributed to floccular biomass, mg VSS/L

X g :

VSS concentration in the IA reactor attributed to granules, mg VSS/L

X r :

VSS concentration in the IA reactor, mg VSS/L

VSS:

Volatile suspended solids

IA:

Intermittent aeration

TSS:

Total suspended solids

No :

Initial concentration of N in the reactor, mg N/L

dN/dt g :

Change in N concentration over time due to granule activity, mg N/L*d

dN/dt f :

Change in N concentration over time due to floccular biomass activity, mg/L*d

VSS:

Volatile suspended solids, mg/L

NH3–N:

Ammonia nitrogen, mg N/L

NO3–N:

Nitrate nitrogen, mg N/L

References

  • Abe F (2007) Exploration of the effects of high hydrostatic pressure on microbial growth, physiology and survival: perspectives from piezophysiology. Biosci Biotechnol Biochem 10:2347–2357

    Article  Google Scholar 

  • Beun JJ, Heijnen JJ, van Loosdrecht MCM (2001) N-removal in a granular sludge sequencing batch airlift reactor. Biotechnol Bioeng 75:82–92

    Article  PubMed  CAS  Google Scholar 

  • Biggs CA, Lant PA (2002) Modelling activated sludge flocculation using population balances. Powder Technol 124(3):201–211

    Article  CAS  Google Scholar 

  • Chen M, Lee D, Tay J (2007) Distribution of extracellular polymeric substances in aerobic granules. Appl Microbiol Biotechnol 73(6):1463–1469

    Article  PubMed  CAS  Google Scholar 

  • de Kreuk MK, van Loosdrecht MCM (2004) Selection of slow growing organisms as a means for improving aerobic granular sludge stability. Wat Sci Technol 49:9–17

    Google Scholar 

  • Dionisi HM, Layton AC, Harms G, Gregory IR, Robinson KG, Sayler GS (2002) Quantification of Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and Nitrospira spp. from full-scale wastewater treatment plants by competitive PCR. Appl Environ Microbiol 68(1):245–253

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dytczak MA, Londry KL, Oleszkiewicz JA (2008) Nitrifying genera in activated sludge may influence nitrification rates. Wat Envron Res 80:388–396

    Article  CAS  Google Scholar 

  • Eaton AD, Clesceri LS, Rice EW, Greenberg AE (eds) (2005) Standard methods for the examination of water and wastewater. American Public Health Association, Baltimore

    Google Scholar 

  • Fernandes PMB, Domitrovic T, Kao CM, Kurtenbach E (2004) Genomic expression pattern in Saccharomyces cerevisiae cells in response to high hydrostatic pressure. FEBS Lett 556:153–160

    Article  PubMed  CAS  Google Scholar 

  • Gieseke A, Bjerrum L, Wagner M, Amann R (2003) Structure and activity of multiple nitrifying bacterial populations co-existing in a biofilm. Environ Microbiol 5(5):355–369

    Article  PubMed  CAS  Google Scholar 

  • Haseborg E, Zamora TM, Fröhlich J, Frimmel FH (2010) Nitrifying microorganisms in fixed-bed biofilm reactors fed with different nitrite and ammonia concentrations. Biores Technol 101:1701–1706

    Article  Google Scholar 

  • Jang A, Yoon YH, Kim IS, Kim KS, Bishop PL (2003) Characterization and evaluation of aerobic granules in sequencing batch reactor. J Biotech 105:71–82

    Article  CAS  Google Scholar 

  • Juang Y-C, Adav SS, Lee D-J, Tay J-H (2010) Stable aerobic granules for continuous-flow reactors: precipitating calcium and iron salts in granular interiors. Biores Tech 101(21):8051–8057

    Article  CAS  Google Scholar 

  • Juretschko S, Timmermann G, Schmid M, Schleifer K-H, Pommerening-Röser A, Koops H-P, Wagner M (1998) Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl Environ Microbiol 64(8):3042–3051

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lee D-J, Chen Y-Y, Show K-Y, Whiteley CG, Tay J-H (2010) Advances in aerobic granule formation and granule stability in the course of storage and reactor operation. Biotech Adv 28(6):919–934

    Article  CAS  Google Scholar 

  • Lemaire R, Webb RI, Yuan Z (2008) Micro-scale observations of the structure of aerobic microbial granules used for the treatment of nutrient-rich industrial wastewater. ISME J 2(5):528–541

    Article  PubMed  CAS  Google Scholar 

  • Liao J, Lou I, de los Reyes FL (2004) Relationship of species-specific filament levels to filamentous bulking in activated sludge. Appl Environ Microbiol 70(4):2420–2428

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu Y, Liu Q-S (2006) Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors. Biotech Adv 24(1):115–127

    Article  CAS  Google Scholar 

  • Liu Y, Tay J-H (2004) State of the art of biogranulation technology for wastewater treatment. Biotechnol Adv 22(7):533–563

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Yang SF, Tay JH (2004) Improved stability of aerobic granules by selecting slow-growing nitrifying bacteria. J Biotech 108(2):161–169

    Article  CAS  Google Scholar 

  • Liu L, Li W-W, Sheng G-P, Liu Z-F, Zeng RJ, Liu J-X, Yu H-Q, Lee D-J (2010a) Microscale hydrodynamic analysis of aerobic granules in the mass transfer process. Environ Sci Tech 44(19):7555–7560

    Article  CAS  Google Scholar 

  • Liu Y-Q, Moy B, Kong Y-H, Tay J-H (2010b) Formation, physical characteristics and microbial community structure of aerobic granules in a pilot-scale sequencing batch reactor for real wastewater treatment. Enzyme Microb Tech 46(6):520–525

    Article  CAS  Google Scholar 

  • Mobarry BK, Wagner M, Urbain V, Rittmann BE, Stahl DA (1996) Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl Environ Microbiol 62:2156–2162

    PubMed  CAS  PubMed Central  Google Scholar 

  • Molina-García AD (2002) The effect of hydrostatic pressure on biological systems. Biotechnol Genet Eng Rev 19(1):3–54

    Article  PubMed  Google Scholar 

  • Morgenroth E, Sherden T, Van Loosdrecht MCM, Heijnen JJ, Wilderer PA (1997) Aerobic granular sludge in a sequencing batch reactor. Wat Res 31(12):3191–3194

    Article  CAS  Google Scholar 

  • Mota C, Ridenoure J, Cheng J, de los Reyes FL (2005a) High levels of nitrifying bacteria in intermittently aerated reactors treating high ammonia wastewater. FEMS Microbiol Ecol 54(3):391–400

    Article  PubMed  CAS  Google Scholar 

  • Mota C, Head MA, Ridenoure JA, Cheng JJ, de los Reyes FL (2005b) Effects of aeration cycles on nitrifying bacterial populations and nitrogen removal in intermittently aerated reactors. Appl Environ Microbiol 71(12):8565–8572

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Muyzer G, Hottentraeger S, Teske A, Wawer C, 1996. Denaturing gradient gel electrophoresis of PCR amplified 16S rDNA ¨A new molecular approach to analyze the genetic diversity of mixed microbial communities. In: Molecular microbial ecology manual. Kluwer Academic Publishers, the Netherlands, 3.4.4, 1-23

  • Picioreanu C, Xavier JB, van Loosdrecht MCM (2004) Advances in mathematical modeling of biofilm structure. Biofilms 1(04):337–349

    Article  Google Scholar 

  • Ross W (1984) The phenomenon of sludge pelletization in the anaerobic treatment of a maize processing plant. Water SA 10(4):197–204

    CAS  Google Scholar 

  • Seviour T, Pijuan M, Nicholson T, Keller J, Yuan Z (2009) Gel-forming exopolysaccharides explain basic differences between structures of aerobic sludge granules and floccular sludges. Wat Res 43(18):4469–4478

    Article  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1962) The comparison of dendrograms by objective methods. Taxon 11(2):33–40

    Article  Google Scholar 

  • Stahl DA, Flesher B, Mansfield HR, Montgomery L (1988) Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl Environ Microbiol 54(5):1079–1084

    PubMed  CAS  PubMed Central  Google Scholar 

  • Su K-Z, Yu H-Q (2005) Formation and characterization of aerobic granules in a sequencing batch reactor treating soybean-processing wastewater. Environ Sci Technol 39(8):2818–2827

    Article  PubMed  CAS  Google Scholar 

  • Tay JH (2002) Specific layers in aerobically grown microbial granules. Lett Appl Microbiol 34:254–257

    Article  PubMed  CAS  Google Scholar 

  • Tijhuis L, van Loosdrecht MCM, Heijnen JJ (1994) Formation and growth of heterotrophic aerobic biofilms on small suspended particles in airlift reactors. Biotech Bioeng 44:595–608

    Article  CAS  Google Scholar 

  • Williams JC, de los Reyes III FL (2006) Microbial community structure of activated sludge during aerobic granulation in an annular gap bioreactor. Wat Sci Tech. 54(1):139–146

    Article  CAS  Google Scholar 

  • Yilmaz G, Lemaire R, Keller J, Yuan Z (2008) Simultaneous nitrification, denitrification, and phosphorus removal from nutrient-rich industrial wastewater using granular sludge. Biotech Bioeng 100(3):529–541

    Article  CAS  Google Scholar 

  • Zheng Y-M, Yu H-Q (2007) Determination of the pore size distribution and porosity of aerobic granules using size-exclusion chromatography. Wat Res 41(1):39–46

    Article  CAS  Google Scholar 

  • Zheng Y-M, Yu H-Q, Liu S-J, Liu X-Z (2006) Formation and instability of aerobic granules under high organic loading conditions. Chemosphere 63(10):1791–1800

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the US Department of Agriculture-National Research Initiative Program (Grant 2001-35102-10783). The authors acknowledge the contributions of Dr. Michael Dykstra from the NCSU College of Veterinary Medicine and to Dr. Nina Allen and Dr. Eva Johannes from the NCSU Department of Botany. The authors also thank Jennifer Ridenoure for her assistance in sample analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis L. de los Reyes III.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mota, C.R., Head, M.A., Williams, J.C. et al. Structural integrity affects nitrogen removal activity of granules in semi-continuous reactors. Biodegradation 25, 923–934 (2014). https://doi.org/10.1007/s10532-014-9712-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-014-9712-3

Keywords

Navigation