Skip to main content

Advertisement

Log in

Biodegradation of 4-bromophenol by Arthrobacter chlorophenolicus A6 in batch shake flasks and in a continuously operated packed bed reactor

  • Original Article
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The present study investigated growth and biodegradation of 4-bromophenol (4-BP) by Arthrobacter chlorophenolicus A6 in batch shake flasks as well as in a continuously operated packed bed reactor (PBR). Batch growth kinetics of A. chlorophenolicus A6 in presence of 4-BP followed substrate inhibition kinetics with the estimated biokinetic parameters value of μ max = 0.246 h−1, K i = 111 mg L−1, K s  = 30.77 mg L−1 and K = 100 mg L−1. In addition, variations in the observed and theoretical biomass yield coefficient and maintenance energy of the culture were investigated at different initial 4-BP concentration. Results indicates that the toxicity tolerance and the biomass yield of A. chlorophenolicus A6 towards 4-BP was found to be poor as the organism utilized the substrate mainly for its metabolic maintenance energy. Further, 4-BP biodegradation performance by the microorganism was evaluated in a continuously operated PBR by varying the influent concentration and hydraulic retention time in the ranges 400–1,200 mg L−1 and 24–7.5 h, respectively. Complete removal of 4-BP was achieved in the PBR up to a loading rate of 2,276 mg L−1 day−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acuna-Askar K, Englande AJ Jr, Ramirez-Medrano A, Coronado-Guardiola JE, Chavez-Gomez B (2003) Evaluation of biomass production in unleaded gasoline and BTEX-fed batch reactors. Water Sci Technol 48:127–133

    CAS  PubMed  Google Scholar 

  • Aguayo J, Barra R, Becerra J, Marti′nez M (2009) Degradation of 2,4,6-tribromophenol and 2,4,6-trichlorophenol by aerobic heterotrophic bacteria present in psychrophilic lakes. World J Microbiol Biotechnol 25:553–560

    Article  CAS  Google Scholar 

  • American Public Health Association (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association Washington, DC

    Google Scholar 

  • Aranda C, Godoy F, Becerra J, Barra R, Mart′inez M (2003) Aerobic secondary utilization of a non- growth and inhibitory substrate 2,4,6-trichlorophenol by Sphingopyxis chilensis S37 and Sphingopyxis -like strain S32. Biodegradation 14:265–274

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Ghoshal AK (2010) Phenol degradation by Bacillus cereus: pathway and kinetic modeling. Bioresour Technol 101:5501–5507

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bursey JT, Pellizzari ED (1982) Analysis of industrial wastewater for organic pollutants in consent degree survey. Contract No. 68-03-2867, pp. 167. US Environmental Protection Agency, Environmental Research Laboratory, Athens, GA

  • Cassidy MB, Lee H, Trevors JT, Zablotowicz RB (1999) Chlorophenol and nitrophenol metabolism by Sphingomonas sp UG30. J Ind Microbiol Biotechnol 23:232–241

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Johns MR (1996) Relationship between substrate inhibition and maintenance energy of Chlamydomonas reinhardtii in heterotrophic culture. J Appl Phycol 8:15–19

    Article  Google Scholar 

  • Chen D, Ray AK (1998) Photo-degradation kinetics of 4-nitrophenol in TiO2 suspension. Water Res 32:3223–3234

    Article  CAS  Google Scholar 

  • de Wit CA (2000) Brominated flame retardants. Report 5065. Swedish Environmental Protection Agency, Stockholm

  • Edwards VH (1970) The influence of high substrate concentrations on microbial kinetics. Biotechnol Bioeng 12:679–712

    Article  CAS  PubMed  Google Scholar 

  • Eker S, Kargi F (2007) Performance of a hybrid-loop bioreactor system in biological treatment of 2,4,6-tri-chlorophenol containing synthetic wastewater: effects of hydraulic residence time. J Hazard Mater 144:86–92

    Article  CAS  PubMed  Google Scholar 

  • Ellis TG, Anselm CV (1999) Effect of batch discharges on extant biodegradation kinetics in activated-sludge systems. Water Environ Res 71:290–298

    Article  CAS  Google Scholar 

  • Entezari MH, Petrier C (2003) A combination of ultrasound and oxidative enzyme: sono-biodegradation of substituted phenols. Ultra Sonochem 10:241–246

    Article  CAS  Google Scholar 

  • Erba AD, Falsanisi D, Liberti L, Notarnicola M, Santoro D (2007) Disinfection by-products formation during wastewater disinfection with peracetic acid. Desalination 215:177–186

    Article  Google Scholar 

  • Fava F, Di Gioia D, Marehetti L, Quattroni G (1996) Aerobic dechlorination of low-chlorinated biphenyls by bacterial biofilms in packed-bed batch bioreactors. Appl Microbiol Biotechnol 45:562–568

    Article  CAS  PubMed  Google Scholar 

  • Godoy FA, Bunster M, Matus V, Aranda C, González B, Martínez MA (2003) Poly-β-hydroxyalkanoates consumption during degradation of 2,4,6-trichlorophenol by Sphingopyxis chilensis S37. Lett Appl Microbiol 36:315–320

    Google Scholar 

  • Grady JCPL, Smets BF, Barbeau DS (1996) Variability in kinetic parameter estimates: a review of possible causes and a proposed terminology. Water Res 30:742–748

    Article  CAS  Google Scholar 

  • Haldane JBS (1965) Enzymes. MIT Press, Cambridge, p 84

    Google Scholar 

  • Hamdaoui Q, Naffrechoux E (2009) Adsorption kinetics of 4-chlorophenol onto granular activated carbon in the presence of high frequency ultrasound. Ultra Sonochem 16:5–22

    Article  Google Scholar 

  • Hao OJ, Kim MH, Seagren EA, Kim H (2002) Kinetics of phenol and chlorophenol utilization by Acinetobacterspecies. Chemosphere 46:797–807

    Article  CAS  PubMed  Google Scholar 

  • Howe PD, Dobson S, Malcolm HM (2005) 2,4,6-Tribromophenol and other simple brominated phenols. World Health Organization, Geneva

    Google Scholar 

  • Israni SH, Koli SS, Patwardhan AW, Melo JS, Dsouza SF (2002) Phenol degradation in rotating biological contactors. J Chem Technol Biotechnol 77:1050–1057

    Article  CAS  Google Scholar 

  • IUCLID (2003) Data set for 2,4,6-tribromophenol, Ispra, European chemicals bureau, International uniform chemical information database

  • Juang R, Tsai S (2006) Growth kinetics of Pseudomonas putida in the biodegradation of single and mixed phenol and sodium salicylate. Biochem Eng J 31:133–140

    Article  CAS  Google Scholar 

  • Kovari KK, Elgim T (1998) Growth kinetics of suspended microbial cells: from single substrate controlled growth to mixed substrate kinetics. Microbiol Mol Biol Rev 62:646–666

    Google Scholar 

  • Kumar A, Kumar S (2005) Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194. Biochem Eng J 22:151–159

    Article  CAS  Google Scholar 

  • Kumaran P, Paruchuri YL (1997) Kinetics of phenol biotransformation. Water Res 31:11–22

    Article  CAS  Google Scholar 

  • Lee SY, Pang-Tsui Y (1999) Succeed at gas/liquid contacting. Chem Eng Prog 95:23–49

    CAS  Google Scholar 

  • Livingston AG, Chase HA (1989) Modeling phenol degradation in a fluidized bed bioreactor. AICHE 35:1980–1992

    Article  CAS  Google Scholar 

  • Lo SC, Lin CF, Wu CH, Hsieh PH (2004) Capability of coupled CdSe/TiO2 for photocatalytic degradation of 4-chlorophenol. J Hazard Mater 114:183–190

    Article  CAS  PubMed  Google Scholar 

  • Monteiro AAMG, Boaventura RAR, Rodrigues AE (2000) Phenol biodegradation by Pseudomonas putida DSM 548 in a batch reactor. Biochem Eng J 6:45–49

    Article  CAS  Google Scholar 

  • Nomani AA, Ajmal M, Ahmad S (1996) Gas chromatography mass spectrometric analysis of four polluted river waters for phenolic and organic compounds. Environ Monit Assess 40:1–9

    Article  CAS  PubMed  Google Scholar 

  • Nordin K, Unell M, Janet KJ (2005) Novel 4-chlorophenol degradation gene cluster and degradation route via hydroxyquinol in Arthrobacter chlorophenolicus A6. Appl Environ Microbiol 71:6538–6544

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paca J, Halecky M, Barta J, Bajpai R (2009) Aerobic biodegradation of 2,4-DNT and 2,6-DNT: performance characteristics and biofilm composition changes in continuous packed-bed bioreactors. J Hazard Mater 163(84):8–854

    Google Scholar 

  • Rangaswami G, Bagyaraj DJ (2001) Agricultural Microbiology, 2nd edn. Prentice-Hall of India Private Ltd., New Delhi, p 112

    Google Scholar 

  • Rhee SK, Fennell DE, Haggblom MM, Kerkhof LJ (2003) Detection by PCR of reductive dehalogenase motifs in a sulfidogenic2-bromophenol-degrading consortium enriched from estuarine sediment. FEMS Microbiol Ecol 43:317–324

    Article  CAS  PubMed  Google Scholar 

  • Ronen Z, Visnovsky S, Nejidat A (2005) Soil extracts and co-culture assist biodegradation of 2,4,6-tribromophenol in culture and soil by an auxotrophic Achromobacter piechaudii strain TBPZ. Soil Biol Biochem 37:1640–1647

    Article  CAS  Google Scholar 

  • Sahinkaya E, Dilek FB (2005) Biodegradation of 4-chlorophenol by acclimated and unacclimated activated sludge—evaluation of biokinetic coefficients. Environ Res 99:243–252

    Article  CAS  PubMed  Google Scholar 

  • Sahinkaya E, Dilek FB (2006) Effect of biogenic substrate concentration on 4-chlorophenol degradation kinetics in sequencing batch reactors with instantaneous feed. J Hazard Mater 137:282–287

    Article  CAS  PubMed  Google Scholar 

  • Sahoo NK, Pakshirajan K, Ghosh PK (2010) Enhancing the biodegradation of 4-chlorophenol by Arthrobacter chlorophenolicus A6 via medium development. Int Biodet Biodeg 64:474–480

    Article  CAS  Google Scholar 

  • Sahoo NK, Pakshirajan K, Ghosh PK (2011) Biodegradation of p-nitrophenol using Arthrobacter chlorophenolicus A6 in a novel upflow packed bed reactor. J Hazard Mater 190:729–737

    Article  CAS  PubMed  Google Scholar 

  • Sahoo NK, Ghosh PK, Pakshirajan K (2013) Biodegradation of 4-bromophenol by Arthrobacter chlorophenolicus A6 in a newly designed packed bed reactor. J Biosci and Bioeng 115:182–188

    Article  CAS  Google Scholar 

  • Salehi Z, Sohrabi M, Vahabzadeh F, Fatemi S, Kawase Y (2010) Modeling of p-nitrophenol biodegradation by Ralstonia eutropha via application of the substrate inhibition concept. J Hazard Mater 177:582–585

    Article  CAS  PubMed  Google Scholar 

  • Shuler ML, Kargi F (1992) Bioprocess engineering. Prentice- Hall, New Jersey, pp 154–161

    Google Scholar 

  • Sponza DT, Uluköy A (2005) Treatment of 2,4-dichlorophenol (DCP) in a sequential anaerobic (upflow anaerobic sludge blanket) aerobic (completely stirred tank) reactor system. Proc Biochem 40:3419–3428

    Google Scholar 

  • Stanlake GJ, Finn RK (1982) Isolation and characterization of a pentachlorophenol degrading bacterium. Appl Environ Microbiol 44:1421–1427

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tolosa I, Bayona JM, Albaiges J (1991) Identification and occurrence of brominated and nitrated phenols in estuarine sediments. Mar Pollut Bull 22:603–607

    Article  CAS  Google Scholar 

  • Uberoi V, Bhattacharya SK (1997) Toxicity and degradability of nitrophenols in anaerobic systems. Water Environ Res 69:146–154

    Article  CAS  Google Scholar 

  • Uhnáková B, Petrˇícˇková A, Biedermann D, Homolka L, Vejvoda V, Bednár P, Papoušková B, Šulc M, Martínková L (2009) Biodegradation of brominated aromatics by cultures and laccase of Trametes versicolor. Chemosphere 76:826–832

    Article  PubMed  Google Scholar 

  • Unell M, Nordin K, Jernberg C, Stenstro¨m J, Jansson JK (2008) Degradation of mixtures of phenolic compounds by Arthrobacter chlorophenolicus A6. Biodegradation 19:495–505

    Article  CAS  PubMed  Google Scholar 

  • Vetter W, Janussen D (2005) Halogenated natural products in five species of antarctic sponges: compounds with POP-like properties. Environ Sci Technol 39:3889–3895

    Article  CAS  PubMed  Google Scholar 

  • Westerberg K, Elvang AM, Stackebrandtm E, Jansson JK (2000) Arthrobacter chlorophenolicus sp. nov., a new species capable of degrading high concentrations of 4-chlorophenol. Int J Syst Evol Microbiol 50:2083–2092

    Article  CAS  PubMed  Google Scholar 

  • Yamada T, Takahama Y, Yamada Y (2008) Biodegradation of 2,4,6- tribromophenol by Ochrobactrum sp. strain TB01. Biosci Biotechnol Biochem 72:1264–1271

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support received from the Centre for the Environment, Indian Institute of Technology Guwahati, for carrying out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naresh Kumar Sahoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahoo, N.K., Pakshirajan, K. & Ghosh, P.K. Biodegradation of 4-bromophenol by Arthrobacter chlorophenolicus A6 in batch shake flasks and in a continuously operated packed bed reactor. Biodegradation 25, 265–276 (2014). https://doi.org/10.1007/s10532-013-9658-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-013-9658-x

Keywords

Navigation