Skip to main content
Log in

A model to describe the performance of the UASB reactor

  • Original Article
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

A dynamic model to describe the performance of the Upflow Anaerobic Sludge Blanket (UASB) reactor was developed. It includes dispersion, advection, and reaction terms, as well as the resistances through which the substrate passes before its biotransformation. The UASB reactor is viewed as several continuous stirred tank reactors connected in series. The good agreement between experimental and simulated results shows that the model is able to predict the performance of the UASB reactor (i.e. substrate concentration, biomass concentration, granule size, and height of the sludge bed).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CSTR:

Continuous stirred tank resctor

DA :

Diffusion coefficient of substrate within the granule (m2 h−1)

E:

Inactive biomass concenration (kg m−3)

KB :

Saturation constant (kg COD m−3 h−1)

Kd :

Decay rate (h−1)

Ki :

Inhibition constant(kg m−3)

km :

Mass transfer coefficient (m h−1)

Ks :

Half saturation concentration (kg m−3)

ks :

Grau second order substrate removal rate constant (h−1)

N:

Number of CSTR

N p :

Number of granules per volume of reactor (granule m−3)

OLR:

Organic loading reate (kg COD m−3 h−1)

Pe:

Péclet number

Q:

Flow rate (m3 h−1)

q:

Flux (kg m−2 h−1)

R:

Granule radius (m)

R0 :

Initial radius of the granule (m)

Rs:

Kinetic term (kg m−3 h−1)

R:

Radial distance from the center of the granule (m)

S:

Substrate concentration (kg m−3)

S0 :

Inlet substrate concentration (kg m−3)

Se :

Effluent substrate concentration (kg m−3)

SP :

Substrate concentration within the granule (kg m−3)

Spgrad :

Gradient of the substrate (kg m−2 h−1)

t:

Time (h)

Umax :

Maximum utilization rate constant (kg COD m−3 h−1)

V:

Volume of CSTR (m3)

X:

Biomass concentration (kg m−3)

Y:

Yield [kg VSS generated (kg COD degraded)−1)]

Β:

Kinetic parameter [kg COD (kg VSS)−1)]

φP :

Volume fraction occupied by the granules

ρbiomass :

Density of the biomass (kg m−3)

μmax :

Maximum specific growth rate (h−1)

References

  • Abbasi S, Abbasi T (2012) Formation and impact of granules in fostering clean energy production and wastewater treatment in upflow anaerobic sludge blanket (UASB) reactors. Renew Sustain Energy Rev 16:1696–1708

    Article  CAS  Google Scholar 

  • Abdesselema K, Azedineb H, Lyndac C, Younesa S (2012) Wastewater discharge impact on groundwater quality of Béchar city, southwestern Algeria: an anthropogenic activities mapping approach. Procedia Eng 33:242–247

    Article  Google Scholar 

  • Abu-Reesh Abu-Sharkh (2003) Comparison of axial dispersion and tanks-in-series models for simulating the performance of enzyme reactors. Ind Eng Chem Res 42:5495–5505

    Article  CAS  Google Scholar 

  • Ahmad A, Latif M, Ghufran R, Wahid Z (2011) Integrated application of upflow anaerobic sludge blanket reactor for the treatment of wastewaters. Water Res 45:4683–4699

    Article  PubMed  Google Scholar 

  • Ahring B, Schmidt J (1996) Review granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors. Biotechnol Bioeng 49:229–246

    PubMed  Google Scholar 

  • Aiyuka S, Amoakoa J, Raskin L (2004) Removal of carbon and nutrients from domestic wastewater using a low investment, integrated treatment concept. Water Res 38:3031–3042

    Article  Google Scholar 

  • Alphenaar P, Perez C, van Berkel W, Lettinga G (1992) Determination of the permeability and porosity of anaerobic sludge granules by size exclusion chromatography. Appl Microbiol Biotechnol 36:795–799

    CAS  Google Scholar 

  • Angelidaki I, Fang C, Boe K (2011) Biogas production from potato-juice, a by-product from potato-starch processing, in upflow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors. Bioresour Technol 102:5734–5741

    Article  PubMed  Google Scholar 

  • Batstone D, Keller J, Angelidaki I, Kalyhuzhnyi S, Pavlostathis S, Rozzi A, Sanders W, Siegrist H, Vavilin V (2002) Anaerobic digestion model No.1 (ADM1), by IWA task group for mathematical modeling of anaerobic wastewater process. Scientific and technical report No. 13. International water asociation (IWA) Publishing, London

  • Bhattacharyya D, Harmita H, Singh K, Wilson B (2009) Fluidization in an anaerobic EGSB reactor: analysis of primary wakes and modeling of sludge blanket. J Environ Eng 135:700–707

    Article  CAS  Google Scholar 

  • Bitton G (2005) Wastewater microbiology. Wiley-Liss, Hoboken

    Book  Google Scholar 

  • Borja R, Banks C, Wang Z (1994) Performance and kinetics of an upflow anaerobic sludge blanket (UASB) reactor treating slaughterhouse wastewater—part A: toxic hazardous substances and environmental engineering. J Enviro Sci Health 29:2063–2085

    Google Scholar 

  • Chou H, Huang J (2005) Role of mass transfer resistance in overall substrate removal rate in upflow anaerobic sludge bed reactors. J Enviro Eng 131:548–556

    Article  CAS  Google Scholar 

  • Contois D (1959) Kinetics of bacterial growth: relationship between population density and specific growth rate of continuous cultures. J Gen Microbiol 21:40–50

    Article  CAS  PubMed  Google Scholar 

  • Flaherty V, McHugh S, Reilly C, Mahony E, Colleran E (2003) Anaerobic granular sludge technology. Environ Sci Bio/Technol 2:225–245

    Article  Google Scholar 

  • Flotats X, Vavilin V, Fernandez B, Palatsi J (2008) Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview. Waste Manag 28:939–951

    Article  PubMed  Google Scholar 

  • Fogler HS (2006) Chemical reactor engineering. Amundson, Huston

    Google Scholar 

  • Foresti E, Zaiat M, Vallero M (2006) Anaerobic processes as the core technology for sustainable domestic wastewater treatment: consolidated applications, new trends, perspectives, and challenges. Rev Environ Sci Bio/Technol 5:3–19

    Article  CAS  Google Scholar 

  • Ghangrekar M, Bhunia P (2008) Analysis, evaluation, and optimization of kinetic parameters for performance appraisal and design of UASB reactors. Bioresour Technol 99:2132–2140

    Article  PubMed  Google Scholar 

  • Gonzalez-Gil G, Seghezzo L, Lettinga G, Kleerebezem R (2001) Kinetics and mass-transfer phenomena in anaerobic granular sludge. Biotechnol Bioeng 73:125–134

    Article  CAS  PubMed  Google Scholar 

  • Graaff M, Temmink H, Zeeman G, Buisman C (2010) Anaerobic treatment of concentrated black water in a UASB reactor at a short HRT. J Water 2:101–119

    Article  Google Scholar 

  • Grau P, Dohányos M, Chudoba J (1975) Kinetics of multicomponent substrate removal by activated sludge. Water Res 9:637–642

    Article  Google Scholar 

  • Hanson M, Carlson J, Anderson J, Low J, Cardinal P, MacKenzie S, Beattie S, Challis J, Bennett R, Meronek S, Wilks R, Buhay W, Wong C (2013) Presence and hazards of nutrients and emerging organic micropollutants from sewage lagoon discharges into Dead Horse creek, Manitoba, Canada. Sci Total Environ 445–446:64–78

    PubMed  Google Scholar 

  • Huang J, Jih C, Lin S, Ting W (2003) Process kinetics of UASB reactors treating non-inhibitory substrate. J Chem Technol Biotechnol 78:762–772

    Article  CAS  Google Scholar 

  • Huang J, Chou H, Hong W (2004a) Temperature dependency of granule characteristics and kinetic behavior in UASB reactors. J Chem Technol Biotechnol 79:797–808

    Article  Google Scholar 

  • Huang G, Hsu S, Liang T, Huang Y (2004b) Study on hydrogen production with hysteresis in UASB. Chemosphere 54:815–821

    Article  CAS  PubMed  Google Scholar 

  • Hulshoff L, Lens P, Castro S, Lettinga G (2004) Anaerobic sludge granulation. Water Res 38:1376–1389

    Article  Google Scholar 

  • Hutñan M, Mrafková L, Drtil M, Derco J (1999) Methanogenic and nonmethanogenic activity of granulated sludge in anaerobic baffled reactor. Chem Papers 53:374–378

    Google Scholar 

  • Kalyuzhnyi S, Fedorovich V, Lens P (2001) Novel dispersed plug flow model for UASB reactors focusing on sludge dynamics in anaerobic digestion. Proc Antwerpen, Belgium 123–128

  • Kalyuzhnyi S, Fedorovich V, Lens P (2006) Dispersed plug flow model for upflow anaerobic sludge bed reactors with focus on granular sludge dynamics. J Ind Microbiol Biotechnol 33:221–237

    Article  CAS  PubMed  Google Scholar 

  • Khanh D, Quan L, Zhang W, Hira D, Furukawa K (2011) Effect of temperature on low-strength wastewater treatment by UASB reactor using poly(vinyl alcohol)-gel carrier. Bioresour Technol 102:11147–11154

    Article  CAS  PubMed  Google Scholar 

  • Korsak L (2008) Anaerobic treatment of wastewater in a UASB reactor. Dissertation, Royal Institute of Technology

  • Kryłów M (2003) Kinetics of subsequent phases of the anaerobic processes. Proc of a Polish-Swedish seminar. In: Plaza E, Levlin E, Hultman B (ed) Integration and optimisation of urban sanitation systems. Wisla pp 29–37

  • Lens P, Gastesi R, Vergeldt F, van Aelst A, Pisabarro A, Van As H (2003) Diffusional properties of methanogenic granular sludge: 1H NMR characterization. Appl Environ Microbiol 69:6644–6649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lew B, Tarre S, Belavski M, Green M (2004) UASB reactor for domestic wastewater treatment at low temperatures: a comparison between a classical UASB and hybrid UASB-filter reactor. Water Sci Technol 49:295–301

    CAS  PubMed  Google Scholar 

  • Lin L, Hongbing L, Gu H, Ping L, Jingxian L, Sheng H, Fuxiang W, Rui X, Xiaoxue H (2009) Total pollution effect of urban surface runoff. J Environ Sci 21:1186–1193

    Article  Google Scholar 

  • Liu Y, Tay J (2002) The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Res 36:1653–1665

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Hai-Lou X, Shu-Fang Y, Joo-Hwa T (2003) Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor. Water Res 37:61–673

    Google Scholar 

  • Lorby J, Flandrios J, Carret G, Pave A (1992) Monod’s bacterial growth model revisited. Bull Math Biol 54:117–122

    Article  Google Scholar 

  • Luo H, Al-Dahhan M (2011) Verification and validation of CFD simulations for local flow dynamics in a draft tube air lift bioreactor. Chem Eng Sci 66:907–923

    Article  CAS  Google Scholar 

  • MacLeod F, Guiot S, Costerton J (1990) Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed and filter reactor. Appl Environ Microbiol 56:1598–1607

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mahmoud N, Zeeman G, Gijzen H, Lettinga G (2003) Anaerobic sewage treatment in a one-stage UASB and a combined UASB-digester system. In proc of the seventh international water technology conference, Egypt 28–30

  • Massé D, Masse L (2000) Treatment of slaughterhouse wastewater in anaerobic sequencing batch reactors. Can Agric Eng 42:131–137

    Google Scholar 

  • McHugh S, O’Reilly C, Mahony T, Colleran E, O’Flaherty V (2003) Anaerobic granular sludge bioreactor technology. Rev Environ Sci Bio/Technol 2:225–245

    Article  CAS  Google Scholar 

  • Nacheva M, Reyes M, Serrano L (2011) Treatment of slaughterhouse wastewater in upflow anaerobic sludge blanket reactor. Water Sci Technol 63:877–884

    Article  CAS  PubMed  Google Scholar 

  • Narnoli S, Mehrotra I (1997) Sludge blanket of UASB reactor: mathematical simulation. Water Res 31:715–726

    Article  CAS  Google Scholar 

  • Ng H, Wong S, Wong S, Krishnan K, Tiew S, Kwok W, Ooi K, Wah Y, Ong S (2006) Integrated anaerobic and aerobic processes for treatment of municipal wastewater. Water Environ Found 3205–3216

  • Palns S, Loewenthal R, Dold P, Marais G (1987) Hypothesis for pelletisation in upflow anaerobic sludge blanket reactor. Water SA 13:69–80

    CAS  Google Scholar 

  • Pereboom J (1994) Size distribution model for methanogenic granules from full scale UASB and IC reactors. Water Sci Technol 30:211–221

    CAS  Google Scholar 

  • Pereboom J, Vereijken T (1994) Methanogenic granule development in full scale internal recirculation reactors. Water Sci Technol 30:9–21

    CAS  Google Scholar 

  • Richardson J, Peacock D (1994) Chemical engineering: chemical & biochemical reactors & process control. Pergamon, Great Britain

    Google Scholar 

  • Rodríguez-Gómez R (2011) Upflow anaerobic sludge blanket reactor: modelling. Dissertation, Royal Institute of Technology

  • Rodríguez-Gómez R, Moreno L, Liu L (2013) A model to predict the behavior of UASB reactors. Int J Environ Res 7:605–614

    Google Scholar 

  • Saravanathamizhan R, Balasubramanian N, Srinivasakannan C (2010) Comparison of thanks-in-series and axial dispersion models for an electrochemical reactor. J Model Simul Syst 1:171–175

    Google Scholar 

  • Seghezzo L (2004) Anaerobic treatment of domestic wastewater in subtropical regions. Dissertation, Wageningen University

  • Seghezzo L, Gutierrez M, Trupiano A, Figueroa M, Cuevas C, Zeeman G, Lettinga G (2002) The effect of sludge discharge and upflow velocity on the removal of suspended solids in a UASB reactor treating settled sewage as moderate temperatures: In the VII Latin-American workshop and seminar on anaerobic digestion Proc Mexico 367–372

  • Sponza D, Isik M (2005) Substrate removal kinetics in an upflow anaerobic sudge blanket reactor decolorizing simulated textile wastewater. Process Biochem 40:1189–1198

    Article  Google Scholar 

  • Sponza D, Uluköy A (2008) Kinetic of carbonaceous substrate in an upflow anaerobic sludge blanket (UASB) reactor treating 2,4 dichlorophenol (2,4 DCP). J Environ Manag 86:121–131

    Article  CAS  Google Scholar 

  • Tay J, Xu H, Teo K (2000) Molecular mechanism of granulation I: H + translocation − dehydration theory. J Environ Eng 126:403–410

    Article  CAS  Google Scholar 

  • Tiwari M, Guha S, Harendranath C, Tripathi S (2006) Influence of extrinsic factors on granulation in UASB reactor. Appl Microbiol Biotechnol 71:145–154

    Article  CAS  PubMed  Google Scholar 

  • Vammen K, Hurtado I, Picado F, Flores Y, Calderón H, Delgado V, Flores S, Caballero Y, Jiménez M, Sáenz R (2012) Recursos hídricos en Nicaragua: una visión estratégica. Diagnóstico del agua en las américas. FCCyT, Mexico

  • Wang J, Li J, Luan Z, Deng Y, Chen L (2011) Evaluation of performance and microbial community in a two-stage UASB reactor pretreating acrylic fiber manufacturing wastewater. Bioresour Technol 102:5709–5716

    Article  PubMed  Google Scholar 

  • Wu M, Hickey R (1997) Dynamic model for UASB reactor including reactor hydraulic, reaction, and diffusion. J Environ Eng 123:244–252

    Article  CAS  Google Scholar 

  • Yetilmezsoy K (2012) Integration of kinetic modeling and desirability function approach for multi-objective optimization of UASB reactor treating poultry manure wastewater. Bioresour Technol 118:89–101

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Imai T, Ukita M, Sekine M, Higuchi T (2006) Triggering forces for anaerobic granulation in UASB reactors. Process Biochem 41:36–43

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Rodríguez-Gómez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Gómez, R., Renman, G., Moreno, L. et al. A model to describe the performance of the UASB reactor. Biodegradation 25, 239–251 (2014). https://doi.org/10.1007/s10532-013-9656-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-013-9656-z

Keywords

Navigation