Skip to main content
Log in

Isolation and characterization of bacteria from mercury contaminated sites in Rio Grande do Sul, Brazil, and assessment of methylmercury removal capability of a Pseudomonas putida V1 strain

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Methylmercury (MeHg) is one of the most dangerous heavy metal for living organisms that may be found in environment. Given the crescent industrialization of Brazil and considering that mercury is a residue of several industrial processes, there is an increasing need to encounter and develop remediation approaches of mercury contaminated sites. The aim of this study was to isolate and characterize methylmercury resistant bacteria from soils and sludge sewage from Rio Grande do Sul, Brazil. Sixteen bacteria were isolated from these contaminated sites and some isolates were highly resistant to methylmercury (>8.7 μM). All the isolates were identified by 16S rDNA. Pseudomonas putida V1 was able to volatilize approximately 90 % of methylmercury added to growth media and to resist to copper, lead, nickel, chromate, zinc, cobalt, manganese and barium. In the presence of high concentrations of methylmercury (12 μM), cell growth was limited, but P. putida V1 was still able to remove up to 29 % of this compound from culture medium. This bacterium removed an average of 77 % of methylmercury from culture medium with pH in the range 4.0–6.0. In addition, methylmercury was efficiently removed (>80 %) in temperature of 21–25 °C. Polymerase chain reactions indicated the presence of merA but not merB in P. putida V1. The growth and ability of P. putida V1 to remove methylmercury in a wide range of pH (4.0 and 8.0) and temperature (10–35 °C), its tolerance to other heavy metals and ability to grow in the presence of up to 11.5 μM of methylmercury, suggest this strain as a new potential resource for degrading methylmercury contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Ball MM, Carrero P, Castro PC et al (2007) Mercury resistance strains isolated from tailing ponds in a gold mining area near El Callao (Bolívar State, Venezuela). Curr Microbiol 54:149–154

    Article  PubMed  CAS  Google Scholar 

  • Barkay T, Schaefer J (2001) Metal and radionuclide bioremediation: issues, considerations and potentials. Curr Opin Microbiol 4:318–323

    Article  PubMed  CAS  Google Scholar 

  • Barkay T, Miller SM, Summers A (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya J, Islam M, Cheong Y (2006) Microbial growth and action: implications for passive bioremediation of acid mine drainage. Mine Water Environ 25:233–240

    Article  CAS  Google Scholar 

  • Bisinoti MCF, Jardim WF (2004) Behavior of methylmercuric in the environment. Quim Nova 27:593–600

    Article  CAS  Google Scholar 

  • Bon EPS, Pereira Jr. N, Gottschalk LMF, Sá-Pereira P, Roseiro JC, Ferrara MA (2008) Bioprocessos para produção de enzimas. In: Bon EPS, Ferrara MA, Corvo M L (eds) Enzimas em Biotecnologia: Produção, aplicações e mercado. Interciência, UFRJ, CAPES, FAPERJ, FCT, Rio de Janeiro, pp 95–123

  • Camargo FAO, Bento FM, Jacques RJS et al (2007) Uso de microrganismos para remediação de metais. In: Ceretta CA, Silva LS, Reichert JM (eds) Tópicos em Ciência do Solo. Sociedade Brasileira de Ciência do Solo, Minas Gerais, pp 468–496

    Google Scholar 

  • Canstein H, Li Y, Timmis KN, Deckwer WD, Wagner-Döbler I (1999) Removal of mercury from chloralkali electrolysis wastewater by a mercury-resistant Pseudomonas putida strain. Appl Environ Microbiol 65:5279–5284

    Google Scholar 

  • Cerqueira VS, Hollenbach EB, Maboni F et al (2011) Biodegradation potential of oil sludge by pure and mixed bacterial cultures. Bioresour Technol 102:11003–11010

    Article  PubMed  CAS  Google Scholar 

  • Chatziefthimou A, Crespo-Medina M, Wang Y et al (2007) The isolation and initial characterization of mercury resistant chemolithotropic thermophilic bacteria from mercury rich geothermal springs. Extremophiles 11:469–479

    Article  Google Scholar 

  • Chien MF, Narita M, Lin KH, Matsui K et al (2010) Organomercurials removal by heterogeneous merB harboring bacterial strains. J Biosci Bioeng 1:94–98

    Article  Google Scholar 

  • Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36:609–662

    Article  PubMed  CAS  Google Scholar 

  • Compeau GC, Bartha R (1985) Sulfate-reducing bacteria: principle methylators of mercury in anoxic estuarine sediment. Appl Environ Microbiol 50: 498–502

    Google Scholar 

  • Conama (2005) http://www.cetesb.sp.gov.br/Solo/relatorios/tabela_valores_2005.pdf. Accessed 05 Jan 2012

  • Douskova I, Doucha JK, Livansky K, Machat J et al (2009) Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Appl Microbiol Biotechnol 82:179–185

    Article  PubMed  CAS  Google Scholar 

  • EPA (2007) CERCLA. Priority list of hazardous substances. http://www.atsdr.cdc.gov/cercla/07 list.html. Accessed 05 Jan 2012

  • EPA 7471B (2009) Mercury in solid or semisolid waste: manual cold-vapor technique. http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/7471b.pdf. Accessed 05 Jan 2012

  • Farrel RE, Germida JJ, Huang PM (1993) Effects of chemical speciation in growth media on the toxicity of mercury(II). Appl Environ Microbiol 59:1507–1514

    Google Scholar 

  • Ferreira DF (2000) Análises estatísticas por meio do Sisvar para Windows versão 4.0. São Carlos, SP, Brasil, pp 255–258

  • Fortunato R, Crespo JG, Reis MAM (2005) Biodegradation of thiomersal containing effluents by a mercury resistant Pseudomonas putida strain. Water Res 39:3511–3522

    Article  PubMed  CAS  Google Scholar 

  • Gadd GM (2000) Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 11:271–279

    Article  PubMed  CAS  Google Scholar 

  • Gadd GM (2004) Microbial influence on meal mobility and application for bioremediation. Geoderma 122:109–119

    Article  CAS  Google Scholar 

  • Galtier N, Gouy M, Gautier C (1996) SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignmentand molecular phylogeny. Comput Appl Biol Sci 12:543–554

    PubMed  CAS  Google Scholar 

  • Gilmour CC, Henry EA, Mitchell R (1992) Sulfate stimulation of mercury methylation in freshwater sediments. Environ Sci Technol 26:2281–2287

    Article  CAS  Google Scholar 

  • Giovanella P, Bento F, Cabral L et al (2011) Isolamento e seleção de micro-organismos resistentes e capazes de volatilizar mercúrio. Quim Nova 34:232–236

    Article  CAS  Google Scholar 

  • Green-Ruiz C (2006) Mercury(II) removal from aqueous solutions by nonviable Bacillus sp. from a tropical estuary. Bioresour Technol 97:1907–1911

    Article  PubMed  CAS  Google Scholar 

  • Griffin HG, Foster TJ, Falkiner FR et al (1985) Molecular analysis of multiple-resistance plasmids transferred from Gram-negative bacteria isolated in a urological unit. Antimicrob Agents Chemother 28:413–418

    Article  PubMed  CAS  Google Scholar 

  • Harada M (1995) Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol 25:1–24

    Article  PubMed  CAS  Google Scholar 

  • Henriette C, Petitdemange E, Raval G et al (1991) Mercuric reductase activity in the adaptation to cationic mercury, phenyl mercuric acetate and multiple antibiotics of a Gram-negative population isolated from an aerobic fixed-bed reactor. J Appl Bacteriol 71:439–444

    Article  PubMed  CAS  Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology. Williams & Wilkins, Baltimore

    Google Scholar 

  • Indiragandhi P, Anandham R, Madhaiyan M et al (2007) Cultivable bacteria associated with larval gut of prothiofos-resistant, prothiofos-susceptible and field-caught populations of diamondback moth, Plutella xylostella and their potential for, antagonism towards entomopathogenic fungi and host. J Appl Microbiol 103:2664–2675

    Article  PubMed  CAS  Google Scholar 

  • Jackson VA, Paulse AN, Bester AA et al (2009) Bioremediation of metal contamination in the Plankenburg River, Western Cape, South Africa. Int Biodeterior Biodegrad 63:559–568

    Article  CAS  Google Scholar 

  • Jan AT, Murtaza I, Ali A et al (2009) Mercury pollution: an emerging problem and potential bacterial remediation strategies. World J Microbiol Biotechnol 25:1529–1537

    Article  CAS  Google Scholar 

  • Kannan SK, Krishnamoorthy R (2006) Isolation of mercury resistant bacteria and influence of abiotic factors on bioavailability of mercury: A case study in Pulicat lake north of Chennai, South East Índia. Sci Total Environ 367:341–353

    Article  PubMed  CAS  Google Scholar 

  • Khan ST, Horiba Y, Yamamoto M, Hiraishi A (2002) Members of the Comamonadaceae as primary poly (3-hydroxybutyrate-co-3-hydroxyvalerate)-degrading denitrifiers in active sludge as revealed by a polyphasic approach. Appl Environ Microbiol 68:3206–3214

    Article  PubMed  CAS  Google Scholar 

  • Lang E, Griese B, Sproer C et al (2007) Characterization of Pseudomonas azelaica DSM 9128, leading to emended description of Pseudomonas citronellolis. Int J Syst Evol Microbiol 57:878–882

    Article  PubMed  CAS  Google Scholar 

  • Leong CC, Syed NI, Lorscheider FL (2001) Retrograde degeneration of neurite membrane structural integrity of nerve growth cones following in vitro exposure to mercury. NeuroReport 12:733–737

    Article  PubMed  CAS  Google Scholar 

  • Modoi CO, Ozunu AL, Stezar IC (2010) Risks associated to soil pollution in the proximity of tailing facilities in the western area of Baia Mare. ProEnvironment 3:352–358

    Google Scholar 

  • Murtaza I, Dutt A, Ali A (2002) Relationship between the persistance of mer operon sequences in Escherichia coli and their resistance to mercury. Curr Microbiol 44:178–183

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K, Fujisaki T, Yoshisada S (1988) Mercury-resistant bacteria in sediment of Minamata Bay. Nippon Suisan Gakkaishi 54:1359–1363

    Article  Google Scholar 

  • Nakamura K, Hagimine M, Sakai M et al (1999) Removal of mercury from mercury-contaminated sediments using a combined method of chemical leaching and volatilization of mercury by bacteria. Biodegradation 10:443–447

    Article  PubMed  CAS  Google Scholar 

  • Nam D, Basu N (2011) Rapid methos to detect organic mercury and total selenium in biological samples. Chem Cent J 5:1–5

    Article  Google Scholar 

  • Narita M, Chiba K, Nishizawa H et al (2003) Diversity of mercury resistance determinants among Bacillus strains isolated from sediment of Minamata Bay. FEMS Microbiol Lett 223:73–82

    Article  PubMed  CAS  Google Scholar 

  • National Research Council (2000) Toxicological effects of methylmercury. National Academy Press, Washington, DC

    Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750. http://www.ncbi.nlm.nih.gov/genbank/. Accessed 05 Jan 2012

    Google Scholar 

  • Okino S, Iwasaki K, Yagi O, Tanaka H (2000) Development of a biological mercury removal-recovery system. Biotechnol Lett 22:783–788

    Article  CAS  Google Scholar 

  • Olson BH, Cayless SM, Ford S et al (1991) Toxic element contamination and the occurrence of mercury-resistant bacteria in Hg-Contaminated soil, sediments, and sludges. Arch Environ Contam Toxicol 20:226–233

    Article  CAS  Google Scholar 

  • Páez-Espino D, Tamames J, Lorenzo V et al (2009) Microbial responses to environmental arsenic. Biometals 22:117–130

    Article  PubMed  Google Scholar 

  • Ponce RA, Kavanagh TJ, Mottet NK et al (1994) Effects of methylmercury on the cell cycle of primary rat CNS invitro. Toxicol Appl Pharmacol 127:83–90

    Article  PubMed  CAS  Google Scholar 

  • Sadhukhan PC, Ghosh S, Chaudhuri J et al (1997) Mercury and organomercurial resistance in bacteria isolated from freshwater fish of wetland fisheries around Calcutta. Environ Pollut 97:71–78

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Arbor, New York

  • Silver S, Phung LT (1996) Bacterial heavy metal resistance: new suprises. Annu Rev Microbiol 50:753–789

    Article  PubMed  CAS  Google Scholar 

  • Skyllberg U, Westin MB, Meili M et al (2009) Elevated concentrations of methyl mercury in streams after forest clear-cut: a consequence of mobilization from soil or new methylation? Environ Sci Technol 22:8535–8541

    Article  Google Scholar 

  • Syversen TL (1982) Effects of repeated dosing of methyl mercury on in vivo protein synthesis in isolated neurones. Acta Pharmacol Toxicol 50:391–397

    Article  CAS  Google Scholar 

  • Takebayashi S, Narihiro T, Fujii Y et al (2007) Water availability is a critical determinant of a population shift from proteobacteria to actinobacteria during start-up operation of mesophilic fed-batch composting. Microbes Environ 22:279–289

    Article  Google Scholar 

  • Takeuchi F, Negishi A, Nakamura S et al (2005) Existence of na iron-oxidizing bacterium Acidithiobacillus ferrooxidans resistant to organomercurial compounds. J Biosci Bioeng 99:586–591

    Article  PubMed  CAS  Google Scholar 

  • Tazisong I, Senwo Z (2009) Mercury concentration and distribution in soils impacted by long-term applied broiler litter. Bull Environ Contam Toxicol 83:291–294

    Article  PubMed  CAS  Google Scholar 

  • Tedesco MJ, Gianello C, Bissani CA (1995) Análises de solo, plantas e outros materiais. In: Boletim Técnico, 2nd edn. Universidade Federal do Rio Grande do Sul, Porto Alegre

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Tsubaki T (1968) Organic mercury poisoning ind district along the Agano river. Clin Neurol Tokyo Rinsho Shinkeigaku 8:511–520

    Google Scholar 

  • Tupe SG, Rajwade JM, Paknikar KM (2007) Taguchi approach significantly increases bioremediation process efficiency: a case study with Hg(II) removal by Pseudomonas aeruginosa. Lett Appl Microbiol 45:36–41

    Article  PubMed  CAS  Google Scholar 

  • Uchino M, Shida O, Uchimura T et al (2001) Recharacterization of Pseudomonas fulva Iizuka and Komagata 1963, and proposals of Pseudomonas parafulva sp. nov. and Pseudomonas cremoricolorata sp. J Gen Appl Microbiol 47:247–261

    Article  PubMed  CAS  Google Scholar 

  • Voordeckers JW, Starovoytov V, Vetriani C (2005) Caminibacter mediatlanticus sp. nov., a thermophilic, chemolithoautotrophic, nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. Int J Syst Evol Microbiol 55:773–779

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Boyd E, Crane S, Lu-Irving P, Krabbenhoft D, King S, Dighton J, Geesey G, Barkay T (2011) Environmental conditions constrain the distribution and diversity of archaeal merA in Yellowstone National Park, Wyoming, U.S.A. Microbial Ecol 62:739–752

  • Weber JH (1993) Review of possible paths for abiotic methylation of mercury(II) in the aquatic environment. Chemosphere 26:2063–2077

    Article  CAS  Google Scholar 

  • Yu RQ, Flanders JR, Mack EE, Turner R, Mirza MB, Barkay T (2012) Contribution of coexisting sulfate and iron reducing bacteria to methylmercury production in freshwater river sediments. Environ Sci Technol 46:2684–2691

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Chen L, Liu D (2012) Characterization of a marine-isolated mercury-resistant pseudomonas putida strain SP1 and its potential application in marine mercury reduction. Appl Microbiol Biotechnol 93(3):1305–1314. doi:10.1007/s00253-011-3454-5

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This Project was supported by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), Brazil. The authors are grateful to T. Barkay (Rutgers University) for critical reading this manuscript and for allowing us to perform PCR reaction (mer genes).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lucélia Cabral or Flávio Anastácio Oliveira Camargo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabral, L., Giovanella, P., Gianello, C. et al. Isolation and characterization of bacteria from mercury contaminated sites in Rio Grande do Sul, Brazil, and assessment of methylmercury removal capability of a Pseudomonas putida V1 strain. Biodegradation 24, 319–331 (2013). https://doi.org/10.1007/s10532-012-9588-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-012-9588-z

Keywords

Navigation