Skip to main content
Log in

Aluminum and sulphate removal by a highly Al-resistant dissimilatory sulphate-reducing bacteria community

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

A highly Al-resistant dissimilatory sulphate-reducing bacteria community was isolated from sludge of the wetland of Urgeiriça mine (community W). This community showed excellent sulphate removal at the presence of Al3+. After 27 days of incubation, 73, 86 and 81% of sulphate was removed in the presence of 0.48, 0.90 and 1.30 mM of Al3+, respectively. Moreover, Al3+ was simultaneously removed: 55, 85 and 78% of metal was removed in the presence of 0.48, 0.90 and 1.30 mM of Al3+, respectively. The dissociation of aluminium-lactate soluble complexes due to lactate consumption by dissimilatory sulphate-reducing bacteria can be responsible for aluminum removal, which probably precipitates as insoluble aluminium hydroxide. Phylogenetic analysis of 16S rRNA gene showed that this community was mainly composed by bacteria closely related to Desulfovibrio desulfuricans. However, bacteria affiliated to Proteus and Ralstonia were also present in the community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98(12):2243–2257

    Article  PubMed  CAS  Google Scholar 

  • Amonette JE, Russel CK, Carosino KA, Robinson NL, Ho JT (2003) Toxicity of Al to Desulfovibrio desulfuricans. Appl Environ Microb 69:4057–4066

    Article  CAS  Google Scholar 

  • Ampe F, Léonard D, Lindley ND (1998) Repression of phenol catabolism by organic acids in Ralstonia eutropha. Appl Environ Microb 64:1–6

    CAS  Google Scholar 

  • Araújo FO (1995) Effects of cyanobacteria on drinking water and human health: an epidemiologic study in Évora, Portugal. Assessing and managing health risks from drinking water contamination: approaches and applications. IAHS Publication, Oxfordshire, pp 101–110

  • Berkowitz J, Michael AA, Robert CG (2005) Laboratory investigation of aluminum solubility and solid-phase properties following alum treatment of lake waters. Water Res 39:3918–3928

    Article  PubMed  CAS  Google Scholar 

  • Blight KR, DE Ralph (2008) Aluminum sulphate and potassium nitrate effects on batch culture of iron oxidising bacteria. Hydrometallurgy 92:130–134

    Article  CAS  Google Scholar 

  • Brown DJA, Sadler K (1989) Fish survival in acid waters. In: Morris R et al (eds) Acid toxicity and aquatic animals. Society for experimental biology seminar series: 34. Cambridge University Press, Cambridge, pp 31–44

  • Corain B, Bombi GG, Tapparo A, Perazzolo M, Zatta P (1996) Aluminium toxicity and metal speciation: established data and open questions. Coord Chem Rev 149:11–22

    CAS  Google Scholar 

  • Costa MC, Santos ES, Barros RJ, Pires C, Martins M (2009) Wine wastes as carbon source for biological treatment of acid mine drainage. Chemosphere 75:831–836

    Article  PubMed  CAS  Google Scholar 

  • D’Haese PC, De Broe ME (1994) In: Nicolini M, Zatta PF, Corain B (eds) Aluminium in chemistry biology and medicine: recent insights in the monitoring, diagnosis and treatment of aluminum-overload in dialysis patients, vol 2. Harwood Academic Publishers GmbH, Chur, pp 215–224

  • Dopson M, Baker-Austin C, Koppineedi PR, Bond PL (2003) Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic microorganisms. Microbiology 149:1959–1970

    Article  PubMed  CAS  Google Scholar 

  • Earle J, Callaghan T (1989) Impacts of mine drainage on aquatic life, water uses, and man made structures In: Coal Mine Drainage Prediction and Pollution Prevention in Pennsylvania, chap 4, Department of Environmental Protection, Harrisburg, Pennsylvania, pp 1–10

  • Fischer J, Quentmeier A, Gansel S, Sabados V, Friedrich CG (2002) Inducible aluminum resistance of Acidiphilium cryptum and aluminum tolerance of other acidophilic bacteria. Arch Microbiol 178:554–558

    Article  PubMed  CAS  Google Scholar 

  • Glauert AM (1975) Fixation, dehydration and embedding of biological specimens. In: Gauert AM (ed) Practical methods in electron microscopy, vol 3(1). Elsevier, Amsterdam, p 208

  • Goulhen F, Gloter A, Guyot F, Bruschi M (2006) Cr(VI) detoxification by Desulfovibrio vulgaris strain Hildenborough: microbe-metal interactions studies. Appl Microbiol Biotechnol 71:892–897

    Article  PubMed  CAS  Google Scholar 

  • Guida L, Saidi Z, Hughes MN, Poole RK (1991) Aluminum toxicity and binding to Escherichia coli. Arch Microbiol 156:507–512

    PubMed  CAS  Google Scholar 

  • Hem JD (1970) Study and interpretation of the chemical characteristics of natural waters, 2nd edn, Water supply paper No 2254. United States Geological Survey, Washington, p 363

  • Hua B, Xu H, Terry J, Deng B (2006) Kinetics of uranium (VI) reduction by hydrogen sulfide in anoxic aqueous systems. Environ Sci Technol 40:4666–4671

    Article  PubMed  CAS  Google Scholar 

  • Jansson ET (2005) Alzheimer disease is substantially preventable in the United States-review of risk factors, therapy, and the prospects for an expert software system. Med Hypotheses 64:960–967

    Article  PubMed  Google Scholar 

  • Johnson DB, Hallberg KB (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338:3–14

    Article  PubMed  CAS  Google Scholar 

  • Liamleam W, Annachhatre AP (2007) Electron donors for biological sulfate reduction. Biotechnol Adv 25:452–463

    Article  PubMed  CAS  Google Scholar 

  • Lloyd JR, Yong P, LE Macaskie (1998) Enzymatic recovery of elemental palladium by using sulphate-reducing bacteria. Appl Environ Microb 64:4607–4609

    CAS  Google Scholar 

  • Lovley (1995) Bioremediation of organic and metal contaminations with dissimilatory metal reduction. J Ind Microbiol 14:85–93

    Article  PubMed  CAS  Google Scholar 

  • MacDonald TL, Martin RB (1988) Aluminum in biological systems. Trends Biochem Sci 13:15–19

    Article  PubMed  CAS  Google Scholar 

  • Martins M, Faleiro ML, Barros RJ, Veríssimo AR, Barreiros MA, Costa MC (2009) Characterization and activity studies of highly heavy metal resistant sulphate-reducing bacteria to be used in acid mine drainage treatment. J Hazard Mater 166:706–713

    Article  PubMed  CAS  Google Scholar 

  • Martins M, Faleiro ML, Chaves S, Tenreiro R, Costa MC (2010) Effect of uranium (IV) on two sulfate-reducing bacteria cultures from a uranium mine site. Sci Total Environ 408:2621–2628

    Article  PubMed  CAS  Google Scholar 

  • Mikutta R, Zang U, Chorover J, Haumaier L, Kalbitz K (2011) Stabilization of extracellular polymeric substances (Bacillus subtilis) by adsorption to and coprecipitation with Al forms. Geochim Cosmochim Ac 75:3135–3154

    Article  CAS  Google Scholar 

  • Miles EM, Miles AA (1951) The Identity of Proteus hydrophilus Bergey et al. and Proteus melanovogenes Miles & Halnan, and their Relation to the Genus Aeromonas Kluyver & van Niel. J Gen Microbiol 5:298–306

    Article  PubMed  CAS  Google Scholar 

  • Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441–454

    PubMed  CAS  Google Scholar 

  • Nagpal S, Chuichulcherm S, Livingstone A, Peeva L (2000) Ethanol utilization by sulfate-reducing bacteria: an experimental and modeling study. Biotechnol Bioeng 16:533–543

    Article  Google Scholar 

  • Neculita CM, Zagury GJ, Bussiere B (2007) Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria: critical review and research needs. J Environ Qual 36:1–16

    Article  PubMed  CAS  Google Scholar 

  • Ojumu TV, Petersen J, Searby GE, Hansford GS (2006) A review of rate equations proposed for microbial ferrous-iron oxidation with a view to application to heap bioleaching. Hydrometallurgy 83:21–28

    Article  CAS  Google Scholar 

  • Petterson A, Hällbom L, Bergmann B (1985) Physiological and structural responses of the cyanobacterium Anabaena cylindrical to aluminum. Physiol Plant 63:153–158

    Article  Google Scholar 

  • Postgate JR (ed) (1984) The sulphate-reducing bacteria. Cambridge University Press, Cambridge

    Google Scholar 

  • Reiber S, Kukull W, Standish-Lee P (1995) J AWWA 87:86–100

    Google Scholar 

  • Rowland A, Grainger R, Smith RS, Hicks N, Hughes A (1990) Water contamination in north Cornwall: a retrospective cohort study into the acute and short-term effects of the aluminium sulphate incident in July 1988. J R Soc Health 110:166–172

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–525

    PubMed  CAS  Google Scholar 

  • Scancar J, Milacic R (2006) Aluminum speciation in environmental samples: a review. Anal Bioanal Chem 386:999–1012

    Article  PubMed  CAS  Google Scholar 

  • Sheoran AS, Sheoran V, Choudhary RP (2010) Bioremediation of acid-rock drainage by sulphate-reducing prokaryotes: a review. Miner Eng 23(14):1073–1100

    Article  CAS  Google Scholar 

  • Studier JA, Keppler KJ (1988) A note on the neighbor-joining algorithm of saitou and neil. Mol Biol Evol 5:729–731

    PubMed  CAS  Google Scholar 

  • Suzuki Y, Kelly SD, Kemner KM, Banfield JF (2003) Microbial populations stimulated for hexavalent uranium reduction in uranium mine sediment. Appl Environ Microb 69:1337–1346

    Article  CAS  Google Scholar 

  • Wall JD, Krumholz LR (2006) Uranium reduction. Annu Rev Microbiol 60:149–166

    Article  PubMed  CAS  Google Scholar 

  • Yokel RA (2004) Aluminum. In: Merian E, Anke M, Ihnat M, Stoeppler M (eds) Elements and their compounds in the environment, occurrence, analysis and biological relevance, vol 2. Wiley-VCH, Weinheim, pp 635–658

  • Zatta P, Zambenedetti P, Milacic R (1998) Aluminum toxicity: the relevant role of the metal speciation. Analusis 26:72–76

    Article  Google Scholar 

Download references

Acknowledgment

The authors wish to thank Fundação para a Ciência e a Tecnologia (FCT) for funding this research through the PhD grant SFRH/BD/29677/2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Clara Costa.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martins, M., Taborda, R., Silva, G. et al. Aluminum and sulphate removal by a highly Al-resistant dissimilatory sulphate-reducing bacteria community. Biodegradation 23, 693–703 (2012). https://doi.org/10.1007/s10532-012-9545-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-012-9545-x

Keywords

Navigation