Skip to main content

Advertisement

Log in

Degradation of difluorobenzenes by the wild strain Labrys portucalensis

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

This study focuses on the biodegradation of difluorobenzenes (DFBs), compounds commonly used as intermediates in the industrial synthesis of various pharmaceutical and agricultural chemicals. A previously isolated microbial strain (strain F11), identified as Labrys portucalensis, able to degrade fluorobenzene (FB) as sole carbon and energy source, was tested for its capability to degrade 1,2-, 1,3- and 1,4-DFB in batch cultures. Strain F11 could use 1,3-DFB as a sole carbon and energy source, with quantitative release of fluoride, but 1,4-DFB was only degraded and defluorinated when FB was supplied simultaneously. Growth of strain F11 with 0.5 mM of 1,3-DFB led to stoichiometric release of fluoride ion. The same result was obtained in cultures fed with 1 mM of 1,3-DFB or 0.5 mM of 1,4-DFB, in the presence of 1 mM of FB. No growth occurred with 1,2-DFB as substrate, and degradation of FB was inhibited when supplied simultaneously with 1,2-DFB. To our knowledge, this is the first time biodegradation of 1,3-DFB as a sole carbon and energy source, and cometabolic degradation of 1,4-DFB, by a single bacterium, is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adebusoye SA, Picardal FW, Ilori MO, Amund OO, Fuqua C, Grindle N (2007) Aerobic degradation of di- and trichlorobenzenes by two bacteria isolated from polluted tropical soils. Chemosphere 66:1939–1946

    Article  PubMed  CAS  Google Scholar 

  • Bartels I, Knackmuss HJ, Reinecke W (1984) Suicide inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-halocatechols. Appl Environ Microbiol 47:500–503

    PubMed  CAS  Google Scholar 

  • Boersma MG, Dinarieva TY, Middelhoven WJ, van Berkel WJH, Doran J, Vervoort J, Rietjens IMCM (1998) 19F Nuclear magnetic resonance as a tool to investigate microbial degradation of fluorophenols to fluorocatechols and fluoromuconates. Appl Environ Microbiol 64:1256–1263

    PubMed  CAS  Google Scholar 

  • Boersma FGH, McRoberts WC, Cobb SL, Murphy CD (2004) A 19F NMR study of fluorobenzoate biodegradation by Sphingomonas sp. HB-1. FEMS Microbiol Lett 237:355–361

    Article  PubMed  CAS  Google Scholar 

  • Bondar VS, Boersma MG, Golovlev EL, Vervoort J, van Berkel WJH, Finkelstein ZI, Solyanikova IP, Golovleva LA, Rietjens IMCM (1998) 19F NMR study on the biodegradation of fluorophenols by various Rhodococcus species. Biodegradation 9:475–486

    Article  PubMed  CAS  Google Scholar 

  • Caldeira M, Heald SC, Carvalho MF, Vasconcelos I, Bull AT, Castro PML (1999) 4-Chlorophenol degradation by a bacterial consortium: development of a GAC biofilm reactor. Appl Microbiol Biotechnol 52:722–729

    Article  PubMed  CAS  Google Scholar 

  • Carvalho MF, Alves CCT, Ferreira MIM, De Marco P, Castro PML (2002) Isolation and initial characterization of a bacterial consortium able to mineralize fluorobenzene. Appl Environ Microbiol 68:102–105

    Article  PubMed  CAS  Google Scholar 

  • Carvalho MF, Ferreira Jorge R, Pacheco CC, De Marco P, Castro PML (2005) Isolation and properties of a pure bacterial strain capable of fluorobenzene degradation as sole carbon and energy source. Environ Microbiol 7:294–298

    Article  PubMed  CAS  Google Scholar 

  • Carvalho MF, Ferreira MIM, Moreira IS, Castro PML, Janssen DB (2006) Degradation of fluorobenzene by Rhizobiales strain F11 via ortho cleavage of 4-fluorocatechol and catechol. Appl Environ Microbiol 72:7413–7417

    Article  PubMed  CAS  Google Scholar 

  • Chaojie Z, Qi Z, Chen L, Yuan Y, Hui Y (2007) Degradation of mono-fluorophenols by an acclimated activated sludge. Biodegradation 18:61

    Google Scholar 

  • Christen P, Domenech F, Michelena G, Auria R, Revah S (2002) Biofiltration of volatile ethanol using sugar cane bagasse inoculated with Candida utilis. J Hazard Mater B89:253–265

    Article  Google Scholar 

  • Dean-Ross D, Moody J, Cerniglia CE (2002) Utilization of mixtures of polycyclic aromatic hydrocarbons by bacteria isolated from contaminated sediment. FEMS Microbiol Ecol 41:1–7

    Article  PubMed  CAS  Google Scholar 

  • deBont JAM, Vorage MJAW, Hartmans S, van den Tweel WJJ (1986) Microbial degradation of 1,3-dichlorobenzene. Appl Environ Microbiol 52:677–680

    CAS  Google Scholar 

  • Engesser K-H, Schmidt E, Knackmuss H-J (1980) Adaptation of Alcaligenes eutrophus B9 and Pseudomonas sp. B13 to 2-fluorobenzoate as growth substrate. Appl Environ Microbiol 39:68–73

    PubMed  CAS  Google Scholar 

  • Ferreira MIM, Marchesi JR, Janssen DB (2008) Degradation of 4-fluorophenol by Arthrobacter sp. strain IF1. Appl Microbiol Biotechnol 78:709–717

    Article  PubMed  CAS  Google Scholar 

  • Field JA, Sierra-Alvarez R (2008) Microbial degradation of chlorinated benzenes. Biodegradation 19:463–480

    Article  PubMed  CAS  Google Scholar 

  • Frank H, Klein D, Renschen D (1996) Environmental trifluoroacetate. Nature 382:34

    Article  CAS  Google Scholar 

  • Haggblom MM (1992) Microbial breakdown of halogenated aromatic pesticides and related-compounds. FEMS Microbiol Rev 103:29–72

    Article  CAS  Google Scholar 

  • Haigler BE, Nishino SF, Spain JC (1988) Degradation of 1,2-dichlorobenzene by a Pseudomonas sp. Appl Environ Microbiol 54:294–301

    PubMed  CAS  Google Scholar 

  • Haigler BE, Pettigrew CA, Spain JC (1992) Biodegradation of mixtures of substituted benzenes by Pseudomonas sp. strain JS150. Appl Environ Microbiol 58:2237–2244

    PubMed  CAS  Google Scholar 

  • Halsey KH, Sayavedra-Soto LA, Bottomley PJ, Arp DJ (2005) Trichloroethylene degradation by butane-oxidizing bacteria causes a spectrum of toxic effects. Appl Microbiol Biotechnol 68:794–801

    Article  PubMed  CAS  Google Scholar 

  • Horvath RS (1972) Microbial co-metabolism and the degradation of organic compounds in nature. Bacteriol Rev 36:146–155

    PubMed  CAS  Google Scholar 

  • Janssen DB, Pries F, van der Ploeg JR (1994) Genetics and biochemistry of dehalogenating enzymes. Annu Rev Microbiol 48:163–191

    Article  PubMed  CAS  Google Scholar 

  • Key B, Howell R, Criddle C (1997) Fluorinated organics in the biosphere. Am Chem Soc 31:2445–2454

    CAS  Google Scholar 

  • Klecka GM, Gibson DT (1981) Inhibition of catechol 2,3-dioxygenase from Pseudomonas putida by 3-chlorocatechol. Appl Environ Microbiol 41:1159–1165

    PubMed  CAS  Google Scholar 

  • Liu D, Thomson K, Kaiser KLE (1982) Quantitative structure-toxicity relationship of halogenated phenols on bacteria. Bull Environ Contam Toxicol 29:130–136

    Article  PubMed  CAS  Google Scholar 

  • McCulloch A (2003) Fluorocarbons in the global environment: a review of the important interactions with atmospheric chemistry and physics. J Fluor Chem 123(1):21

    Article  CAS  Google Scholar 

  • Milne GWA, Goldman P, Holzman JL (1968) The metabolism of 2-fluorobenzoic acid. II. Studies with 18O2. J Biol Chem 243:5374–5376

    PubMed  CAS  Google Scholar 

  • Monferrán MV, Echenique JR, Wunderlin DA (2005) Degradation of chlorobenzenes by a strain of Acidovorax avenae isolated from a polluted aquifer. Chemosphere 61:98–106

    Article  PubMed  Google Scholar 

  • Moody CA, Field JA (2000) Perfluorinated surfactants and the environmental implications of their use in fire-fighting foams. Environ Sci Technol 34:3864

    Article  CAS  Google Scholar 

  • Munõz R, Díaz LF, Bordel S, Villaverde S (2007) Inhiibitory effects of catechol accumulation on benzene biodegradation in Pseudomonas putida F1 cultures. Chemosphere 68:244–252

    Article  PubMed  Google Scholar 

  • Nalelwajek D, Van Der Puy M (1989) Process for the preparation of difluorobenzenes. US Patent 4847442. Accessed 2 Oct 2009

  • Oltmanns RH, Müller R, Otto MK, Lingens F (1989) Evidence for a new pathway in the bacterial degradation of 4-fluorobenzoate. Appl Environ Microbiol 55:2499–2504

    PubMed  CAS  Google Scholar 

  • Rapp P, Gabriel-Jürgens LHE (2003) Degradation of alkanes and highly chlorinated benzenes, and production of biosurfactants, by a psychrophilic Rhodococcus sp. and genetic characterization of its chlorobenzene dioxygenase. Microbiol 149:2879–2890

    Article  CAS  Google Scholar 

  • Reardon KF, Mosteller DC, Bull Rogers JD (2000) Biodegradation kinetics of benzene, toluene, and phenol as single and mixed substrates for Pseudomonas putida F1. Biotechnol Bioeng 69:385–400

    Article  PubMed  CAS  Google Scholar 

  • Renganathan V (1989) Possible involvement of toluene-2,3-dioxygenase in defluorination of 3-fluoro-substituted benzenes by toluene-degrading Pseudomonas sp. strain T-12. Appl Environ Microbiol 55:330–334

    PubMed  CAS  Google Scholar 

  • Renganathan V, Johnston B (1989) Catechols of novel substrates produced using toluene ring oxidation pathway of Pseudomonas sp. strain T-12. Appl Microbiol Biotechnol 31:419–424

    Article  CAS  Google Scholar 

  • Sáez PB, Rittmann BE (1993) Biodegradation kinetics of a mixture containing a primary substrate (phenol) and an inhibitory co-metabolite (4-chlorophenol). Biodegradation 4:3–21

    Article  PubMed  Google Scholar 

  • Sander P, Wittich R-M, Fortnagel P, Wilkes H, Francke W (1991) Degradation of 1,2,4-trichloro- and 1,2,4,5-tetrachlorobenzene by Pseudomonas strains. Appl Environ Microbiol 57:1430–1440

    PubMed  CAS  Google Scholar 

  • Schlomann M, Schmidt E, Knackmuss H-J (1990) Different types of dienelactone hydrolase in 4-fluorobenzoate-utilizing bacteria. J Bacteriol 172:5112–5118

    PubMed  CAS  Google Scholar 

  • Schraa G, Boone ML, Jetten MSM, van Neerven ARW, Colberg PJ, Zehnder AJB (1986) Degradation of 1,4-dichlorobenzene by Alcaligenes sp. strain A175. Appl Environ Microbiol 52:1374–1381

    PubMed  CAS  Google Scholar 

  • Spiess E, Sommer C, Görisch H (1995) Degradation of 1,4-dichlorobenzene by Xanthobacter flavus 14p1. Appl Environ Microbiol 61:3884–3888

    PubMed  CAS  Google Scholar 

  • Stringfellow WT, Aitken MD (1995) Competitive metabolism of naphthalene, methylnaphthalenes, and fluorine by phenanthrene-degrading Pseudomonads. Appl Environ Microbiol 61:357–362

    PubMed  CAS  Google Scholar 

  • Wigmore GJ, Ribbons DW (1980) p-cymene pathway in Pseudomonas putida: selective enrichment of defective mutants by using halogenated substrate analogs. J Bacteriol 143:816–824

    PubMed  CAS  Google Scholar 

  • Zaitsev G, Uotila JS, Tsitko IV, Lobanok AG, Salkinoja-Salonen MS (1995) Utilization of halogentad benzenes, phenols, and benzoates by Rhodococcus opacus GM-14. Appl Environ Microbiol 61:4191–4201

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Dick B. Janssen for helpful discussions and for revising the manuscript. I.S. Moreira and M.F. Carvalho wish to acknowledge a research grant from Fundação para a Ciência e Tecnologia (FCT), Portugal (Ref. SFRH/BD/28744/2006 and SFRH/BPD/44670/2008, respectively) and Fundo Social Europeu (FSE) (Programa Operacional Potencial Humano (POPH), Quadro de Referência Estratégico Nacional (QREN)). This work was supported by the FCT Project-POCI/V.5/A0105/2005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula M. L. Castro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreira, I.S., Amorim, C.L., Carvalho, M.F. et al. Degradation of difluorobenzenes by the wild strain Labrys portucalensis . Biodegradation 23, 653–662 (2012). https://doi.org/10.1007/s10532-012-9541-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-012-9541-1

Keywords

Navigation