Skip to main content

Advertisement

Log in

Cupriavidus necator JMP134 rapidly reduces furfural with a Zn-dependent alcohol dehydrogenase

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Ethanol is a renewable biofuel, and it can be produced from lignocellulosic biomass. The biomass is usually converted to hydrolysates that consist of sugar and sugar derivatives, such as furfural. Yeast ferments sugar to ethanol, but furfural higher than 3 mM is inhibitory. It can take several days for yeast cells to reduce furfural to non-inhibitory furfuryl alcohol before producing ethanol. Bioreduction of furfural to furfuryl alcohol before fermentation may relieve yeast from furfural toxicity. We observed that Cupriavidus necator JMP134, a strict aerobe, rapidly reduced 17 mM furfural to less than 3 mM within 14 min with cell turbidity of 1.0 at 600 nm at 50°C. The rapid reduction consumed ethanol. The “furfural reductase” (FurX) was purified, and it oxidized ethanol to acetaldehyde and reduced furfural to furfuryl alcohol with NAD+ as the cofactor. The protein was identified with mass spectrometry fingerprinting to be a hypothetical protein belonging to Zn-dependent alcohol dehydrogenase family. The furX-inactivation mutant of C. necator JMP134 lost the ability to rapidly reduce furfural, and Escherichia coli producing recombinant FurX gained the ability. Thus, an alcohol dehydrogenase enabled bacteria to rapidly reduce furfural with ethanol as the reducing power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almeida JRM, Bertilsson M, Gorwa-Grauslund MF, Gorsich SW, Liden G (2009) Metabolic effects of furaldehydes and impacts on biotechnological processes. Appl Microbiol Biotechnol 82:625–638

    Article  PubMed  CAS  Google Scholar 

  • Antal MJ, Leesomboon T, Mok WS, Richards GN (1991) Mechanism of formation of 2-furaldehyde from D-xylose. Carbohydr Res 217:71–85

    Article  CAS  Google Scholar 

  • Boopathy R, Bokang H, Daniels L (1993) Biotransformation of furfural and 5-hydroxymethyl furfural by enteric bacteria. J Ind Microbiol Biotechnol 11:147–150

    CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Ceccarelli C, Liang ZX, Strickler M, Prehna G, Goldstein BM, Klinman JP, Bahnson BJ (2004) Crystal structure and amide H/D exchange of binary complexes of alcohol dehydrogenase from Bacillus stearothermophilus: insight into thermostability and cofactor binding. Biochemistry 43:5266–5277

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez T, Ingram LO, Preston JF (2006) Purification and characterization of a furfural reductase (FFR) from Escherichia coli strain LYO1: an enzyme important in the detoxification of furfural during ethanol production. J Biotechnol 121:154–164

    Article  PubMed  CAS  Google Scholar 

  • Heer D, Sauer U (2008) Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microb Biotech 1:497–506

    Article  CAS  Google Scholar 

  • Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26

    Article  PubMed  CAS  Google Scholar 

  • Koopman F, Wierckx N, de Winde JH, Ruijssenaars HJ (2010) Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14. PNAS 107:4919–4924

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Levin I, Meiri G, Peretz M, Burstein Y, Frolow F (2004) The ternary complex of Pseudomonas aeruginosa alcohol dehydrogenase with NADH and ethylene glycol. Protein Sci 13:1547–1556

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Lam LKM, Xun L (2011) Biochemical characterization of ethanol-dependent reduction of furfural by alcohol dehydrogenases. Biodegradation. doi:10.1007/s10532-011-9477-x

  • Liu ZL, Slininger PJ, Dien BS, Berhow MA, Kurtzman CP, Gorsich SW (2004) Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran. J Ind Microbiol Biotechnol 31:345–352

    PubMed  CAS  Google Scholar 

  • Liu ZL, Moon J, Andersh AJ, Slininger PJ, Weber S (2008) Multiple gene mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and HMF by ethanologenic yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 81:743–753

    Article  PubMed  CAS  Google Scholar 

  • Liu ZL, Ma M, Song M (2009) Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways. Mol Genet Genomics 282:233–244

    Article  PubMed  Google Scholar 

  • Louie TM, Webster CM, Xun L (2002) Genetic and biochemical characterization of a 2,4,6-trichlorophenol degradation pathway in Ralstonia eutropha JMP134. J Bacteriol 184:3492–3500

    Article  PubMed  CAS  Google Scholar 

  • Martín C, Marcet M, Almazán O, Jönsson LJ (2007) Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Biores Technol 98:1767–1773

    Article  Google Scholar 

  • Miller EN, Jarboe LR, Yomano LP, York SW, Shanmugam KT, Ingram LO (2009) Silencing of NADPH-dependent oxidoreductase genes (yqhD and dkgA) in furfural-resistant ethanologenic Escherichia coli. Appl Environ Microbiol 75:4315–4323

    Article  PubMed  CAS  Google Scholar 

  • Modig T, Lidén G, Taherzadeh MJ (2002) Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem J 363:769–776

    Article  PubMed  CAS  Google Scholar 

  • Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 93:1–10

    Article  PubMed  CAS  Google Scholar 

  • Pellegrino S, Bruno FS, Petrarulo M (1999) Liquid chromatographic determination of ethyl alcohol in body fluids. J Chromatogr B Biomed Sci Appl 729:103–110

    Article  PubMed  CAS  Google Scholar 

  • Petersson A, Almeida JR, Modig T, Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF, Lidén G (2006) A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast 23:455–464

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Taherzadeh MJ, Gustafsson L, Niklasson C, Lidén G (1999) Conversion of furfural in aerobic and anaerobic batch fermentation of glucose by Saccharomyces cerevisiae. J Biosci Bioeng 87:169–174

    Article  PubMed  CAS  Google Scholar 

  • Tang X, Munske GR, Siems WF, Bruce JE (2005) Mass spectrometry identifiable cross-linking strategy for studying protein-protein interactions. Anal Chem 77:311–318

    Article  PubMed  CAS  Google Scholar 

  • Thomsen MH, Thygesen A, Thomsen AB (2009) Identification and characterization of fermentation inhibitors formed during hydrothermal treatment and following SSF of wheat straw. Appl Microbiol Biotechnol 83:447–455

    Article  PubMed  CAS  Google Scholar 

  • Zaldivar J, Martinez A, Ingmar L (1999) Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 65:24–33

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Q. Li was partially funded by a scholarship from the Ministry of Education of the People’s Republic of China. L. K. M. Lam was partially funded by College of Science, Washington State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luying Xun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Metthew Lam, L.K. & Xun, L. Cupriavidus necator JMP134 rapidly reduces furfural with a Zn-dependent alcohol dehydrogenase. Biodegradation 22, 1215–1225 (2011). https://doi.org/10.1007/s10532-011-9476-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-011-9476-y

Keywords

Navigation