Skip to main content
Log in

Phn and Nag-like dioxygenases metabolize polycyclic aromatic hydrocarbons in Burkholderia sp. C3

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Burkholderia sp. C3 can transform polycyclic aromatic hydrocarbons (PAHs), a class of ubiquitous pollutants, through multiple pathways, indicating existence of multiple dioxygenases (Seo et al., in Biodegradation 18:123–131, 2006a). Both phn and nag-like genes in C3 were cloned and identified with the DNA sequence alignment and the gene organization in the clusters. When cloned and expressed in Escherichia coli, either the alpha- and beta-subunits of dioxygenase of the phn genes or the ferredoxin-, alpha- and beta-subunits of the nag-like genes transformed naphthalene, phenanthrene and dibenzothiophene but at different rates. The E. coli transformant containing the phn genes transformed phenanthrene faster than that containing the nag-like genes, which was consistent with higher transcription of the phnAc gene than the nagAc-like gene in C3 in response to phenanthrene. 1-Hydroxy-2-naphthanoic acid (1H2NA) and 2-hydroxy-1-naphthanoic acid (2H1NA) (3,4- and 1,2-dioxygenation metabolites of phenanthrene, respectively) were detected in the culture medium of the phn genes transformed E. coli. The concentration of 1H2NA was 262-fold higher than 2H1NA in the medium of the phn genes transformed E. coli. The results suggested that the phn genes play a major role in 1,2-/3,4-dioxygenation and 3,4-dioxygenation dominates. Twenty-eight PAH degradation-associated enzymes including those encoded by the nag-like and phn genes in phenanthrene-grown C3 cells were identified via alignment of amino acid sequences of the detected polypeptides with those in protein databases. The polypeptides were determined with nano liquid chromatography–ion trap mass spectrometry after tryptic in-gel digestion of the enzymes on 1D SDS-PAGE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PAHs:

Polycyclic aromatic hydrocarbons

RHD:

Ring-hydroxylating dioxygenase

1H2NA:

1-Hydroxy-2-naphthanoic acid

2H1NA:

2-Hydroxy-1-naphthanoic acid

References

  • Annweiler E, Richnow HH, Antranikian G, Hebenbrock S, Garms C, Franke S et al (2000) Naphthalene degradation and incorporation of naphthalene-derived carbon into biomass by the thermophile Bacillus thermoleovorans. Appl Environ Microbiol 66:518–523

    Article  PubMed  CAS  Google Scholar 

  • Balashova NV, Kosheleva IA, Golovchenko NP, Boronin AM (1999) Phenanthrene metabolism by Pseudomonas and Burkholderia strains. Process Biochem 35:291–296

    Article  CAS  Google Scholar 

  • Bastiaens L, Springael D, Wattiau P, Harms H, deWachter R, Verachtert H, Diels L (2000) Isolation of adherent polycyclic aromatic hydrocarbon (PAH)-degrading bacteria using PAH-sorbing carriers. Appl Environ Microbiol 66:1834–1843

    Article  PubMed  CAS  Google Scholar 

  • Chauhan A, Faziurrahman, Oakeshott JG, Jain RK (2008) Bacterial metabolism of polycyclic aromatic hydrocarbons: strategies for bioremediation. J Ind Microbiol 48:95–113

    Article  CAS  Google Scholar 

  • Denome SA, Stanley DC, Olson ES, Young KD (1993) Metabolism of dibenzothiophene and naphthalene in Pseudomonas strains: complete DNA sequence of an upper naphthalene catabolic pathway. J Bacteriol 176:2158–2164

    Google Scholar 

  • Eaton RW, Chapman PJ (1995) Formation of indigo and related compounds from indolecarboxylic acids by aromatic acid-degrading bacteria: chromogenic reactions for cloning genes encoding dioxygenases that act on aromatic acids. J Bacteriol 177:6983–6988

    PubMed  CAS  Google Scholar 

  • Elias JE, Haas W, Faherty BK, Gygi SP (2005) Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations. Nat Methods 2:667–675

    Article  PubMed  CAS  Google Scholar 

  • Fuenmayor SL, Wild M, Boyes AL, Williams P (1998) A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2. J Bacteriol 180:2522–2530

    PubMed  CAS  Google Scholar 

  • Geiselbrecht AD, Hedlund BP, Tichi MA, Staley JT (1998) Isolation of marine polycyclic aromatic hydrocarbon (PAH)-degrading Cycloclasticus strains from the Gulf of Mexico and comparison of their PAH degradation ability with that of Puget Sound Cycloclasticus strains. Appl Environ Microbiol 64:4703–4710

    PubMed  CAS  Google Scholar 

  • Goyal AK, Zylstra GJ (1997) Genetics of naphthalene and phenanthrene degradation by Comamonas testosterone. J Ind Microbiol Biotechol 19:401–407

    Article  CAS  Google Scholar 

  • Habe H, Omori T (2003) Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotechnol Biochem 67:225–243

    Article  PubMed  CAS  Google Scholar 

  • Herrick JB, Stuart-Keil KG, Ghiorse WC, Madsen EL (1997) Natural horizontal transfer of a naphthalene dioxygenase gene between bacteria native to a coal tar-contaminated field site. Appl Environ Microbiol 63:2330–2337

    PubMed  CAS  Google Scholar 

  • Kang H, Hwang SY, Kim YM, Kim E, Kim YS, Kim SK et al (2003) Degradation of phenanthrene and naphthalene by a Burkholderia species strain. Can J Microbiol 49:139–144

    Article  PubMed  CAS  Google Scholar 

  • Kauppi B, Lee K, Carredano E, Parales RE, Gibson DT, Eklund H, Ramaswamy S (1998) Structure of an aromatic ring-hydroxylating dioxygenase-naphthalene 1,2-dioxygenase. Structure 6:571–586

    Article  PubMed  CAS  Google Scholar 

  • Laurie AD, Lloyd-Jones G (1999) The phn genes of Burkholderia sp. strain RP007 constitute a divergent gene cluster for polycyclic aromatic hydrocarbon catabolism. J Bacteriol 181:531–540

    PubMed  CAS  Google Scholar 

  • Laurie AD, Lloyd-Jones G (2000) Quantification of phnAc and nahAc in contaminated New Zealand soils by competitive PCR. Appl Environ Microbiol 66:1814–1817

    Article  PubMed  CAS  Google Scholar 

  • Lee SE, Seo JS, Keum YS, Lee KJ, Li QX (2007) Fluoranthene metabolism and associated proteins in Mycobacterium sp. JS14. Proteomics 7:2059–2069

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Cui Y, Duan Y, Zhong J, Sun W, Wang M et al (2010) Synthesis of metabolites of polycyclic aromatic hydrocarbons. Mini Rev Org Chem 7:134–144

    Article  CAS  Google Scholar 

  • Ma Y, Wang L, Shao Z (2006) Pseudomonas, the dominant polycyclic aromatic hydrocarbon-degrading bacteria isolated from Antarctic soils and the role of large plasmids in horizontal gene transfer. Environ Microbiol 8:455–465

    Article  PubMed  CAS  Google Scholar 

  • Mallick S, Chatterjee S, Dutta TK (2007) A novel degradation pathway in the assimilation of phenanthrene by Staphylococcus sp. strain PN/Y via meta-cleavage of 2-hydroxy-1-naphthoic acid: formation of trans-2,3-dioxo-5-(29-hydroxyphenyl)-pent-4-enoic acid. Microbiology 153:2104–2115

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Mason JR, Cammack R (1992) The electron-transport proteins of hydroxylating bacterial dioxygenases. Annu Rev Microbiol 46:277–305

    Article  PubMed  CAS  Google Scholar 

  • Matheson VG, Forney LJ, Suwa Y, Nakatsu CH, Sexstone AJ, Holben WE (1996) Evidence for acquisition in nature of a chromosomal 2,4-dichlorophenoxyacetic acid/a-ketoglutarate dioxygenase gene by different Burkholderia spp. Appl Environ Microbiol 62:2457–2463

    PubMed  CAS  Google Scholar 

  • Moody JD, Freeman JP, Doerge DR, Cerniglia CE (2001) Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 67:1476–1483

    Article  PubMed  CAS  Google Scholar 

  • Moser R, Stahl U (2001) Insights into the genetic diversity of initial dioxygenases from PAH-degrading bacteria. Appl Microbiol Biotechnol 55:609–618

    Article  PubMed  CAS  Google Scholar 

  • Parales RE, Lee K, Resnick SM, Jiang H, Lessner DJ, Gibson DT (2000) Substrate specificity of naphthalene dioxygenase: effect of specific amino acids at the active site of the enzyme. J Bacteriol 182:1641–1649

    Article  PubMed  CAS  Google Scholar 

  • Peng RH, Xiong AS, Xue Y, Fu XY, Gao F, Zhao W et al (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32:927–955

    Article  PubMed  CAS  Google Scholar 

  • Pinyakong O, Habe H, Supaka N, Pinpanichkarn P, Juntongjin K, Yoshida T et al (2000) Identification of novel metabolites in the degradation of phenanthrene by Sphingomonas sp. strain P2. FEMS Microbiol Lett 191:115–121

    Article  PubMed  CAS  Google Scholar 

  • Romine MF, Stillwell LC, Wong KK, Thurston SJ, Sisk EC, Sensen C et al (1999) Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199. J Bacteriol 181:1585–1602

    PubMed  CAS  Google Scholar 

  • Seo JS, Keum YS, Hu Y, Lee SE, Li QX (2006a) Degradation of phenanthrene by Burkholderia sp. C3: initial 1,2- and 3,4-dioxygenation and meta- and ortho-cleavage of naphthalene-1,2-diol. Biodegradation 18:123–131

    Article  PubMed  Google Scholar 

  • Seo JS, Keum YS, Hu Y, Lee SE, Li QX (2006b) Phenanthrene degradation in Arthrobacter sp. P1-1: initial 1,2-, 3,4- and 9,10-dioxygenation, and meta- and ortho-cleavages of naphthalene-1, 2-diol after its formation from naphthalene-1,2-dicarboxylic acid and hydroxyl naphthoic acids. Chemosphere 65:2388–2394

    Article  PubMed  CAS  Google Scholar 

  • Seo JS, Keum YS, Harada RM, Li QX (2007) Isolation and characterization of bacteria capable of degrading polycyclic aromatic hydrocarbons (PAHs) and organophosphorus pesticides from PAH-contaminated soil in Hilo, Hawaii. J Agric Food Chem 55:5383–5389

    Article  PubMed  CAS  Google Scholar 

  • Seo JS, Keum YS, Li QX (2009) Bacterial degradation of aromatic compounds. Int J Environ Res Public Health 6:278–309

    Article  PubMed  CAS  Google Scholar 

  • Simon MJ, Osslund TD, Saunders R, Ensley BD, Suggs S, Harcourt A et al (1993) Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strains G7 and NCIB-9816-4. Gene 127:31–37

    Article  PubMed  CAS  Google Scholar 

  • Wilson MS, Herrick JB, Jeon CO, Hinman DE, Madsen EL (2003) Horizontal transfer of phnAc dioxygenase genes within one of two phenotypically and genotypically distinctive naphthalene-degrading guilds from adjacent soil environments. Appl Environ Microbiol 69:2172–2181

    Article  PubMed  CAS  Google Scholar 

  • Yin JL, Shackel NA, Zekry A, McGuinness PH, Richards C, Putten KVD et al (2001) Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) for measurement of cytokine and growth factor mRNA expression with fluorogenic probes or SYBR Green I. Immunol Cell Biol 79:213–221

    Article  PubMed  CAS  Google Scholar 

  • Zhou NY, Fuenmayor SL, Williams PA (2001) nag genes of Ralstonia (formerly Pseudomonas) sp. strain U2 encoding enzymes for gentisate catabolism. J Bacteriol 183:700–708

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from Hawaii State Civil Defense, Hawaii Department of Agriculture Pesticides Branch, the US-EPA award 989512-01-1, USDA TSTAR awards, US ONR NRL award N00173-05-2-C003, and the ONR HEET award N00014-09-1-0709.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing X. Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3095 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tittabutr, P., Cho, I.K. & Li, Q.X. Phn and Nag-like dioxygenases metabolize polycyclic aromatic hydrocarbons in Burkholderia sp. C3. Biodegradation 22, 1119–1133 (2011). https://doi.org/10.1007/s10532-011-9468-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-011-9468-y

Keywords

Navigation