Skip to main content
Log in

Cloning, heterologous expression, and functional characterization of the nicotinate dehydrogenase gene from Pseudomonas putida KT2440

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

6-Hydroxynicotinate can be used for the production of drugs, pesticides and intermediate chemicals. Some Pseudomonas species were reported to be able to convert nicotinic acid to 6-hydroxynicotinate by nicotinate dehydrogenase. So far, previous reports on NaDH in Pseudomonas genus were confused and contradictory each other. Recently, Ashraf et al. reported an NaDH gene cloned from Eubacterium barkeri and suggested some deducted NaDH genes from other nine bacteria. But they did not demonstrate the activity of recombinant NaDH and did not mention NaDH gene in Pseudomonas. In this study we cloned the gene of NaDH, ndhSL, from Pseudomonas putida KT2440. NdhSL in P. putida KT2440 is composed of two subunits. The small subunit contains [2Fe2S] iron sulfur domain, while the large subunit contains domains of molybdenum cofactor and cytochrome c. Expression of recombinant ndhSL in P. entomophila L48, which lacks the ability to produce 6-hydroxynicotinate, enabled the resting cell and cell extract of engineering P. entomophila L48 to hydroxylate nicotinate. Gene knockout and recovery studies further confirmed the ndhSL function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alhapel A, Darley DJ, Wagener N, Eckel E, Elsner N, Pierik AJ (2006) Molecular and functional analysis of nicotinate catabolism in Eubacterium barkeri. Proc Natl Acad Sci USA 103:12341–12346. doi:10.1073/pnas.0601635103

    Article  PubMed  CAS  Google Scholar 

  • Amano T, Ochi N, Sato H, Sakaki S (2007) Oxidation reaction by xanthine oxidase: theoretical study of reaction mechanism. J Am Chem Soc 129:8131–8138. doi:10.1021/ja068584d

    Article  PubMed  CAS  Google Scholar 

  • Andreesen JR, Fetzner S (2002) The molybdenum-containing hydroxylases of nicotinate, isonicotinate, and nicotine. Met Ions Biol Syst 39:405–430

    PubMed  CAS  Google Scholar 

  • Berry DF, Francis AJ, Bollag JM (1987) Microbial metabolism of homocyclic and heterocyclic aromatic compounds under anaerobic conditions. Microbiol Rev 51:43–59

    PubMed  CAS  Google Scholar 

  • Blatny JM, Brautaset T, Winther-Larsen HC, Haugan K, Valla S (1997a) Construction and use of a versatile set of broad-host-range cloning and expression vectors based on the RK2 replicon. Appl Environ Microbiol 63:370–379

    PubMed  CAS  Google Scholar 

  • Blatny JM, Brautaset T, Winther-Larsen HC, Karunakaran P, Valla S (1997b) Improved broad-host-range RK2 vectors useful for high and low regulated gene expression levels in gram-negative bacteria. Plasmid 38:35–51. doi:10.1006/plas.1997.1294

    Article  PubMed  CAS  Google Scholar 

  • Boyer HW, Roulland-Dussoix D (1969) A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 41:459–472. doi:10.1016/0022-2836(69)90288-5

    Article  PubMed  CAS  Google Scholar 

  • Caponi L, Migliorini P (1999) Immunoblotting. In: Caponi L, Migliorini P (eds) Antibody usage in the laboratory. Springer, Berlin

    Google Scholar 

  • Davis RW, Botstein D, Roth JR (1980) A manual for genetic engineering: advanced bacterial genetics. Cold Spring Harbor, NY

    Google Scholar 

  • Dower WJ, Miller JF, Ragsdale CW (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145. doi:10.1093/nar/16.13.6127

    Article  PubMed  CAS  Google Scholar 

  • Ensign JC, Rittenberg SC (1964) The pathway of nicotinic acid oxidation by a Bacillus species. J Biol Chem 239:2285–2291

    PubMed  CAS  Google Scholar 

  • Harary I (1957a) Bacterial fermentation of nicotinic acid. I. End products. J Biol Chem 227:815–822

    PubMed  CAS  Google Scholar 

  • Harary I (1957b) Bacterial fermantation of nicotinic acid. II. Anaerobic reversible hydroxylation of nicotinic acid to 6-hydroxynicotinic acid. J Biol Chem 227:823–831

    PubMed  CAS  Google Scholar 

  • Hirschberg R, Ensign JC (1971a) Oxidation of nicotinic acid by a Bacillus species: source of oxygen atoms for the hydroxylation of nicotinic acid and 6-hydroxynicotinic acid. J Bacteriol 108:757–759

    PubMed  CAS  Google Scholar 

  • Hirschberg R, Ensign JC (1971b) Oxidation of nicotinic acid by a Bacillus species: purification and properties of nicotinic acid and 6-hydroxynicotinic acid hydroxylases. J Bacteriol 108:751–756

    PubMed  CAS  Google Scholar 

  • Hirschberg R, Ensign JC (1972) Oxidation of nicotinic acid by a Bacillus species: regulation of nicotinic acid and 6-hydroxynicotinic acid hydroxylases. J Bacteriol 112:392–397

    PubMed  CAS  Google Scholar 

  • Holcenberg JS, Tsai L (1969) Nicotinic acid metabolism. IV. Ferredoxin-dependent reduction of 6-hydroxynicotinic acid to 6-oxo-1, 4, 5, 6-tetrahydronicotinic acid. J Biol Chem 244:1204–1211

    PubMed  CAS  Google Scholar 

  • Hughes DE (1955) 6-Hydroxynicotinic acid as an intermediate in the oxidation of nicotinic acid by Pseudomonas fluorescens. Biochem J 60:303–310

    PubMed  CAS  Google Scholar 

  • Hunt AL (1959) Purification of the nicotinic acid hydroxylase system of Pseudomonas fluorescens KB1. Biochem J 72:1–7

    PubMed  CAS  Google Scholar 

  • Hunt AL, Hughes DE, Lowenstein JM (1958) The hydroxylation of nicotinic acid by Pseudomonas fluorescens. Biochem J 69:170–173

    PubMed  CAS  Google Scholar 

  • Hurh BYT, Nagasawa T (1994) Purification and characterization of nicotinic acid dehydrogenase from Pseudomonas fluoescens TN5. Ferment Bioengin 78:19–26. doi:10.1016/0922-338X(94)90172-4

    Article  CAS  Google Scholar 

  • Hurh BOM, Yamane T et al (1994) Microbial production of 6-hydroxynicotinic acid, an impotrant building block for the synthesis of modern insecticides. J Ferment bioengin 77:382–385

    Article  CAS  Google Scholar 

  • Iwasaki K, Uchiyama H, Yagi O, Kurabayashi T, Ishizuka K, Takamura Y (1994) Transformation of Pseudomonas putida by electroporation. Biosci Biotechnol Biochem 58:851–854

    Article  PubMed  CAS  Google Scholar 

  • Jiménez JI, Canales A, Jiménez-Barbero J, Ginalski K, Rychlewski L, García JL, Díaz E (2008) Deciphering the genetic determinants for aerobic nicotinic acid degradation: the nice cluster from Pseudomonas putida KT2440. Proc Natl Acad Sci USA 105(32):11329–11334. doi:10.1073/pnas.0802273105

    Article  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  PubMed  CAS  Google Scholar 

  • Lu WH, Wang X, Xu L, Dai YJ, Yuan S (2005) Induction of nicotinic acid hydroxylase activity of Pseudomonas putida NA-1 and optimization of transformation conditions. Acta Microbiol Sin 45:6–9

    CAS  Google Scholar 

  • Nagel M, Andreesen JR (1989) Molybdenum-dependent degradation of nicotinic acid by Bacillus sp. DSM 2923. FEMS Microbiol Lett 59:147–152. doi:10.1111/j.1574-6968.1989.tb03099.x

    Article  CAS  Google Scholar 

  • Nagel M, Andreesen JR (1990) Purification and characterization of the molybdoenzymes nicotinate dehydrogenase and 6-hydroxynicotinate dehydrohenase from Bacillus niacini. Arch Microbiol 154:605–613. doi:10.1007/BF00248844

    Article  CAS  Google Scholar 

  • Nakano H, Wieser M, Hurh B, Kawai T, Yoshida T, Yamane T, Nagasawa T (1999) Purification, characterization and gene cloning of 6-hydroxynicotinate 3-monooxygenase from Pseudomonas fluorescens TN5. Eur J Biochem 260:120–126. doi:10.1046/j.1432-1327.1999.00124.x

    Article  PubMed  CAS  Google Scholar 

  • Nelson KE, Weinel C, Paulsen IT et al (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808. doi:10.1046/j.1462-2920.2002.00366.x

    Article  PubMed  CAS  Google Scholar 

  • Pastan I, Tsai L, Stadtman ER (1964) Nicotinic acid metabolism. I. Distribution of isotope in fermentation products of labelled nicotinic acid. J Biol Chem 239:902–906

    PubMed  CAS  Google Scholar 

  • Quenee L, Lamotte D, Polack B (2005) Combined sacB-based negative selection and cre-lox antibiotic marker recycling for efficient gene deletion in pseudomonas aeruginosa. Biotechniques 38:63–67. doi:10.2144/05381ST01

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, vol 2. Cold Spring Harbor Laboratory Press, NY

    Google Scholar 

  • Stemmer WP, Crameri A, Ha KD, Brennan TM, Heyneker HL (1995) Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene 164:49–53. doi:10.1016/0378-1119(95)00511-4

    Article  PubMed  CAS  Google Scholar 

  • Tautz D, Renz M (1983) An optimized freeze-squeeze method for the recovery of DNA fragments from agarose gels. Anal Biochem 132:14–19. doi:10.1016/0003-2697(83)90419-0

    Article  PubMed  CAS  Google Scholar 

  • Tsai L, Pastan I, Stadtman ER (1966) Nicotinic acid metabolism. II. The isolation and characterization of intermediates in the fermentation of nicotinic acid. J Biol Chem 241:1807–1813

    PubMed  CAS  Google Scholar 

  • Vodovar N, Vallenet D, Cruveiller S et al (2006) Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nat Biotechnol 24:673–679. doi:10.1038/nbt1212

    Article  PubMed  CAS  Google Scholar 

  • Wenzel SC, Gross F, Zhang Y, Fu J, Stewart AF, Muller R (2005) Heterologous expression of a myxobacterial natural products assembly line in pseudomonads via red/ET recombineering. Chem Biol 12:349–356. doi:10.1016/j.chembiol.2004.12.012

    Article  PubMed  CAS  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119. doi:10.1016/0378-1119(85)90120-9

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Nagasawa T (2000) Enzymatic functionalization of aromatic N-heterocycles: hydroxylation and carboxylation. J Biosci Bioeng 89:111–118. doi:10.1016/S1389-1723(00)88723-X

    Article  PubMed  CAS  Google Scholar 

  • Yuan S, Yang Y, Sun J et al (2005) A combined technology of growing culture hydroxylation of nicotinic acid and resting cells hydroxylation of 3-cyanopyridine by Comamonas testosterone JA1. Eng Life Sci 5:369–374. doi:10.1002/elsc.200520063

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Isabelle Vallet-Gely, Bruno Lemaitre laboratory, FRANCE, and He Jian, Nanjing Agriculture University, Department of Life Science, for kindly providing Pseudomonas putida L48 and Pseudomonas putida KT2440, respectively. This work was supported by the Key Fundamental Research Program of Jiangsu Higher Education Institution of China (06KJA21016), the Natural Science Foundation of Jiangsu Higher Education Institution of China (04KJB180071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Yuan, S., Chen, T. et al. Cloning, heterologous expression, and functional characterization of the nicotinate dehydrogenase gene from Pseudomonas putida KT2440. Biodegradation 20, 541–549 (2009). https://doi.org/10.1007/s10532-008-9243-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-008-9243-x

Keywords

Navigation