Skip to main content
Log in

Bio-remediation of colored industrial wastewaters by the white-rot fungi Phanerochaete chrysosporium and Pleurotus ostreatus and their enzymes

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The effect of Phanerochaete chrysosporium and Pleurotus ostreatus whole cells and their ligninolytic enzymes on models of colored industrial wastewaters was evaluated. Models of acid, direct and reactive dye wastewaters from textile industry have been defined on the basis of discharged amounts, economic relevance and representativeness of chemical structures of the contained dyes. Phanerochaete chrysosporium provided an effective decolourization of direct dye wastewater model, reaching about 45% decolourization in only 1 day of treatment, and about 90% decolourization within 7 days, whilst P. ostreatus was able to decolorize and detoxify acid dye wastewater model providing 40% decolourization in only 1 day, and 60% in 7 days. P. ostreatus growth conditions that induce laccase production (up to 130,000 U/l) were identified, and extra-cellular enzyme mixtures, with known laccase isoenzyme composition, were produced and used in wastewater models decolourization. The mixtures decolorized and detoxified the acid dye wastewater model, suggesting laccases as the main agents of wastewater decolourization by P. ostreatus. A laccase mixture was immobilized by entrapment in Cu-alginate beads, and the immobilized enzymes were shown to be effective in batch decolourization, even after 15 stepwise additions of dye for a total exposure of about 1 month.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Asgher M, Kausara S, Bhattia HN, Shah SAH, Ali M (2008) Optimization of medium for decolourization of Solar golden yellow R direct textile dye by Schizophyllum commune IBL-06. Int Biodeterior Biodegradation 61:189–193. doi:10.1016/j.ibiod.2007.07.009

    Article  CAS  Google Scholar 

  • Balan DSL, Monteiro RTR (2001) Decolorization of textile indigo dye by ligninolytic fungi. J Biotechnol 89:141–145. doi:10.1016/S0168-1656(01)00304-2

    Article  PubMed  CAS  Google Scholar 

  • Barr DP, Aust SD (1994) Mechanisms white-rot fungi use to degrade pollutants. Environ Sci Technol 28:78–87. doi:10.1021/es00051a002

    Article  Google Scholar 

  • Beydilli MI, Pavlostathis SG, Tincher WC (1998) Decolourization and toxicity screening of selected reactive azo dyes under methanogenic conditions. Water Sci Technol 38:225–232. doi:10.1016/S0273-1223(98)00531-9

    Article  CAS  Google Scholar 

  • Borchert M, Libra JA (2001) Decolourization of reactive dyes by the white rot fungus Trametes versicolor in sequencing batch reactors. Biotechnol Bioeng 75:313–321. doi:10.1002/bit.10026

    Article  PubMed  CAS  Google Scholar 

  • Chagas EP, Durrant LR (2001) Decolourization of azo dyes by Phanerochaete chrysosporium and Pleurotus sajorcaju. Enzyme Microb Technol 29:473–477. doi:10.1016/S0141-0229(01)00405-7

    Article  CAS  Google Scholar 

  • Chivukula M, Renganathan V (1995) Phenolic azo dye oxidation by laccase from Pyricularia oryzae. Appl Environ Microbiol 61:4374–4377

    PubMed  CAS  Google Scholar 

  • Edens WA, Goins TQ, Dooley D, Henson JM (1999) Purification and characterization of secreted laccase of Gaeumannomyces graminis var tritici. Appl Environ Microbiol 65:3071–3074

    PubMed  CAS  Google Scholar 

  • Eichlerova I, Homolka L, Lisa L, Nerud F (2005) Orange G and Remazol Brilliant Blue R decolorization by white rot fungi Dichomitus squalens, Ischnoderma resinosum and Pleurotus calyptratus. Chemosphere 60:398–404. doi:10.1016/j.chemosphere.2004.12.036

    Article  PubMed  CAS  Google Scholar 

  • Giardina P, Aurilia V, Cannio R, Marzullo L, Amoresano A, Siciliano R et al (1996) The gene, protein, and glycan structures of laccase from Pleurotus ostreatus. Eur J Biochem 235:508–515. doi:10.1111/j.1432-1033.1996.00508.x

    Article  PubMed  CAS  Google Scholar 

  • Giardina P, Palmieri G, Fontanella B, Rivieccio V, Sannia G (2000) Manganese peroxidase isoenzymes produced by Pleurotus ostreatus grown on wood sawdust. Arch Biochem Biophys 376:171–179

    Article  PubMed  CAS  Google Scholar 

  • Glenn JK, Gold MH (1983) Decolourization of several polymeric dyes by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 45:1741–1747

    PubMed  CAS  Google Scholar 

  • Glenn JK, Akileswaran L, Gold MH (1986) Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys 251:688–696. doi:10.1016/0003-9861(86)90378-4

    Article  PubMed  CAS  Google Scholar 

  • Harazono K, Nakamura K (2005) Decolorization of mixtures of different reactive textile dyes by the white-rot basidiomycete Phanerochaete sordida and inhibitory effect of polyvinyl alcohol. Chemosphere 59:63–68. doi:10.1016/j.chemosphere.2004.09.104

    Article  PubMed  CAS  Google Scholar 

  • Jin XC, Liu GQ, Xu ZH, Tao WY (2007) Decolorization of a dye industry effluent by Aspergillus fumigatus XC6. Appl Microbiol Biotechnol 74:239–243. doi:10.1007/s00253-006-0658-1

    Article  PubMed  CAS  Google Scholar 

  • Johjima T, Ohkuma M, Kudo T (2003) Isolation and cDNA cloning of novel hydrogen peroxide-dependent phenol oxidase from the basidiomycete Termitomyces albuminosus. Appl Microbiol Biotechnol 61:220–225

    PubMed  CAS  Google Scholar 

  • Kandelbauer A, Maute O, Kessler RW, Erlacher A, Gubitz GM (2004) Study of dye decolourization in an immobilized laccase enzyme-reactor using online spectroscopy. Biotechnol Bioeng 87:552–563. doi:10.1002/bit.20162

    Article  PubMed  CAS  Google Scholar 

  • Kapdan IK, Kargia F, McMullanb G, Marchant R (2000) Effect of environmental conditions on biological decolourization of textile dyestuff by C versicolor. Enzyme Microb Technol 26:381–387. doi:10.1016/S0141-0229(99)00168-4

    Article  PubMed  CAS  Google Scholar 

  • Kirby N, McMullan G, Marchant R (1995) Decolourisation of artificial textile effluent by Phanerochaete chrysosporium. Biotechnol Lett 17:761–764. doi:10.1007/BF00130365

    Article  CAS  Google Scholar 

  • Kirby N, Marchant R, McMullan G (2000) Decolourisation of synthetic textile dyes by Phlebia tremellosa. FEMS Microbiol Lett 188:93–96. doi:10.1111/j.1574-6968.2000.tb09174.x

    Article  PubMed  CAS  Google Scholar 

  • Knapp JS, Newby PS (1999) The decolourisation of a chemical industry effluent by white rot fungi. Water Research 33:575–577

    Article  CAS  Google Scholar 

  • Knapp JS, Newby PS, Reece LP (1995) Decolourization of dyes by wood-rotting basidiomycete fungi. Enzyme Microb Technol 17:664–668. doi:10.1016/0141-0229(94)00112-5

    Article  CAS  Google Scholar 

  • Martins MAM, Lima N, Silvestre AJD, Queiroz MJ (2003) Comparative studies of fungal degradation of single or mixed bioaccessible reactive azo dyes. Chemosphere 52:967–973

    PubMed  CAS  Google Scholar 

  • McMullan G, Meehan C, Conneely A, Kirby N, Robinson T, Nigam P et al (2001) Mini-review: microbial decolourisation and degradation of textile dyes. Appl Microbiol Biotechnol 56:81–87. doi:10.1007/s002530000587

    Article  PubMed  CAS  Google Scholar 

  • Mohorcic M, Teodorovic S, Golob V, Friedrich J (2006) Fungal and enzymatic decolourisation of artificial textile dye baths. Chemosphere 63:1709–1717. doi:10.1016/j.chemosphere.2005.09.063

    Article  PubMed  CAS  Google Scholar 

  • Nozaki K, Beh CH, Mizuno M, Isobe T, Shiroishi M, Kanda T et al (2008) Screening and investigation of dye decolorization activities of basidiomycetes. J Biosci Bioeng 105:69–72. doi:10.1263/jbb.105.69

    Article  PubMed  CAS  Google Scholar 

  • O’Neill C, Hawkes FR, Hawkes DL, Lourenco ND, Pinheiro HM, Delee W (1999) Colour in textile effluents—sources, measurement, discharge consents and simulation: a review. J Chem Technol Biotechnol 74:1009–1018. doi :10.1002/(SICI)1097-4660(199911)74:11<1009::AID-JCTB153>3.0.CO;2-N

    Article  CAS  Google Scholar 

  • Palmieri G, Cennamo G, Faraco V, Amoresano A, Sannia G, Giardina P (2003) Atypical laccase isoenzymes from copper supplemented Pleurotus ostreatus cultures. Enzyme Microb Technol 33:220–230. doi:10.1016/S0141-0229(03)00117-0

    Article  CAS  Google Scholar 

  • Palmieri G, Cennamo G, Sannia G (2005a) Remazol Brilliant Blue R decolourisation by the fungus Pleurotus ostreatus and its oxidative enzymatic system. Enzyme Microb Technol 36:17–24. doi:10.1016/j.enzmictec.2004.03.026

    Article  CAS  Google Scholar 

  • Palmieri G, Giardina P, Sannia G (2005b) Laccase-mediated Remazol Brilliant Blue R decolourization in a fixed-bed bioreactor. Biotechnol Prog 21:1436–1441. doi:10.1021/bp050140i

    Article  PubMed  CAS  Google Scholar 

  • Parshetti GK, Kalme SD, Gomare SS (2007) Biodegradation of reactive blue-25 by Aspergillus ochraceus NCIM-1146. J Biotechnol 98:3638–3642

    CAS  Google Scholar 

  • Pasti-Grigsby MB, Paszczynski A, Gosczynski S, Crawford DL, Crawford RL (1992) Influence of aromatic substitution patterns on azo dye degradability by Streptomyces sp. and Phanerochaete chrysosporium. Appl Environ Microbiol 58:3605–3613

    PubMed  CAS  Google Scholar 

  • Paszczynski A, Pasti-Grisgby MB, Gosczynski S, Crawford RL, Crawford DL (1992) Mineralization of sulfonated azo dyes and sulfanilic acid by Phanerochaete chrysosporium and Streptomyces chromofuscus. Appl Environ Microbiol 58:3598–3604

    PubMed  CAS  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33. doi:10.1007/s002530100745

    Article  PubMed  CAS  Google Scholar 

  • Robinson T, Chandran B, Nigam P (2001a) Studies on the production of enzymes by white-rot fungi for the decolorisation of textile dyes. Enzyme Microb Technol 29:575–579. doi:10.1016/S0141-0229(01)00430-6

    Article  CAS  Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001b) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255. doi:10.1016/S0960-8524(00)00080-8

    Article  PubMed  CAS  Google Scholar 

  • Sannia G, Limongi P, Cocca E, Buonocore F, Nitti G, Giardina P (1991) Purification and characterization of a veratryl alcohol oxidase enzyme from the lignin degrading basidiomycete Pleurotus ostreatus. Biochim Biophys Acta 1073:114–119

    PubMed  CAS  Google Scholar 

  • Scheibner K, Hofrichter M, Fritsche W (1997) Mineralization of 2-amino-4, 6-dinitrotoluene by manganese peroxidase of the white-rot fungus Nematoloma frowardii. Biotechnol Lett 19:835–839. doi:10.1023/A:1018369116521

    Article  CAS  Google Scholar 

  • Shin KS, Oh IK, Kim CJ (1997) Production and purification of Remazol Brilliant Blue R decolorizing peroxidase from the culture filtrate of Pleurotus ostreatus. Appl Environ Microbiol 63:1744–1748

    PubMed  CAS  Google Scholar 

  • Spadaro JT, Gold MH, Renganathan V (1992) Degradation of azo dyes by the lignin-degrading fungus Phanerochaete chrysosporium. Appl Environ Microbiol 58:2397–2401

    PubMed  CAS  Google Scholar 

  • Sutherland GRJ, Aust SD (1996) The effects of calcium on the thermal stability and activity of manganese peroxidase. Arch Biochem Biophys 332:128–134

    Article  PubMed  CAS  Google Scholar 

  • Swamy J, Ramsay JA (1999) The evaluation of white rot fungi in the decoloration of textile dyes. Enzyme Microb Technol 24:130–137. doi:10.1016/S0141-0229(98)00105-7

    Article  CAS  Google Scholar 

  • Tien M, Kirk TK (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc Natl Acad Sci USA 81:2280–2284. doi:10.1073/pnas.81.8.2280

    Article  PubMed  CAS  Google Scholar 

  • Timofeevski SL, Aust SD (1997) Kinetics of calcium release from manganese peroxidase during thermal inactivation. Arch Biochem Biophys 342:169–175. doi:10.1006/abbi.1997.0104

    Article  PubMed  CAS  Google Scholar 

  • Vaidya AA, Datye KV (1982) Environmental pollution during chemical processing of synthetic fibres. Colourage 14:3–10

    Google Scholar 

  • Willmott N, Guthrie J, Nelson G (1998) The biotechnology approach to colour removal from textile effluent. J Soc Dyers Colour 114:38–41

    CAS  Google Scholar 

  • Zille A, Tzanov T, Gübitz GM, Cavaco-Paulo A (2003) Immobilized laccase for decolourization of Reactive Black 5 dyeing effluent. Biotechnol Lett 25:1473–1477. doi:10.1023/A:1025032323517

    Article  PubMed  CAS  Google Scholar 

  • Zissi U, Lyberatos G (2001) Partial degradation of p-aminoazobenzene by a defined mixed culture of Bacillus subtilis and Stenotrophomonas maltophilia. Biotechnol Bioeng 72:49–54. doi :10.1002/1097-0290(20010105)72:1<49::AID-BIT7>3.0.CO;2-X

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Commission, Sixth Framework Program (SOPHIED contract NMP2-CT2004-505899), by grants from the Ministero dell’Università e della Ricerca Scientifica (Progetti di Rilevante Interesse Nazionale, PRIN), and from Centro Regionale di Competenza BioTekNet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Faraco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faraco, V., Pezzella, C., Miele, A. et al. Bio-remediation of colored industrial wastewaters by the white-rot fungi Phanerochaete chrysosporium and Pleurotus ostreatus and their enzymes. Biodegradation 20, 209–220 (2009). https://doi.org/10.1007/s10532-008-9214-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-008-9214-2

Keywords

Navigation