Skip to main content
Log in

Bacterial growth yields on EDTA, NTA, and their biodegradation intermediates

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) are widely used anthropogenic chelating agents for control of metal speciation and are ubiquitous in natural waters and wastewaters. This is the first report of systematic measurement of the growth yields of a mixed culture (BNC1-BNC2) on EDTA and its biodegradation intermediates, and of Aminobacter aminovorans (aka Chelatobacter heintzii) ATCC 29600 on NTA and its biodegradation intermediates. The yields measured for BNC1-BNC2 co-culture were 75.0 g of cell dry weight (CDW) (mole of EDTA)−1, 68.6 g of CDW (mole of ED3 A)−1, 51.2 g of CDW (mole of N,N′-EDDA)−1, 34.5 g of CDW (mole of ED)−1, 26.3 g of CDW (mole of IDA)−1, 12.2 g of CDW (mole of glycine)−1, and 9.7 g of CDW (mole of glyoxylate)−1. The yields measured for A. aminovorans were 44.3 g of CDW (mole of NTA)−1, 37.9 g of CDW (mole of IDA)−1, 15.2 g of CDW (mole of glycine)−1, and 10.4 g of CDW (mole of glyoxylate)−1. The biodegradation pathways of EDTA, NTA, and several of their metabolic intermediates include reactions catalyzed by oxygenase enzymes, which may reduce energy available for cell synthesis. Comparison of measured yields with predicted yields indicates that the effect of oxygenase reaction on cell yield can be quantified experimentally as well as modeled based on thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

EDTA:

Ethylenediaminetetraacetic acid

NTA:

Nitrilotriacetic acid

ED3A:

Ethylenediaminetriacetic acid

3KP:

3-ketopiperazine-N,N-diacetate

N,N′-EDDA:

N,N′-ethylenediaminediacetic acid

EDMA:

Ethylenediaminemonoacetic acid

ED:

Ethylenediamine

IDA:

Iminodiacetic acid

C. heintzii :

Chelatobacter heintzii ATCC 29600

References

  • Alder AC, Siegrist H, Gujer W, Giger W (1990) Behavior of NTA and EDTA in biological wastewater treatment. Water Res 24:733–742

    Article  CAS  Google Scholar 

  • Andrews G (1989) Estimating cell and product yield. Bitechnol Bioeng 33:256–265

    Article  CAS  Google Scholar 

  • Baik MH, Lee KJ (1994) Transport of radioactive solutes in the presence of chelating agents. Ann Nucl Energy 54:81–96

    Article  Google Scholar 

  • Bally M, Wilberg E, Kuhni MI, Egli T. (1994) Growth and regulation of enzyme synthesis in the nitrilotriacetic acid (NTA)-degrading bacterium Chelatobacter heintzii ATCC 29600. Microbiology 140:1927–1936

    Article  CAS  Google Scholar 

  • Barber LB, Brown GK, Kennedy KR, Leenheer JA, Nyes TI, Rostad CE, Thorn KA (1997) Organic constituents that persist during aquifer storage and recovery of reclaimed water in Los Angeles County, California. JAWRA 33:261–272

    Google Scholar 

  • Barber LB, Brown GK, Zaugg SD (1999) Potential endocrine disrupting organic chemicals in treated municipal wastewater and river water, Upper Midwest, USA. In: Keith L, Jones-Lepp T, Needham L (eds) Analysis of environmental endocrine disruptors, American chemical society symposium series No. 747. American Chemical Society, Washington DC

    Google Scholar 

  • Bergers P, DeGroot A (1994) The analysis of EDTA in water by HPLC. Water Res 28:639–642

    Article  CAS  Google Scholar 

  • Bohuslavek J, Payne JW, Liu Y, Bolton HJR, Xun L (2001) Cloning, sequencing, and characterization of a gene cluster involved in EDTA degradation from the bacterium BNC1. Appl Environ Microbiol 67:688–695

    Article  CAS  Google Scholar 

  • Bolton H Jr, Girvin DC, Plymale AE, Harvey SD, Workman DJ (1996) Degradation of Metal-Nitrilotriacetate (NTA) Complexes by Chelatobacter heintzii. Environ Sci Technol 30:931–938

    Article  CAS  Google Scholar 

  • Bucheli-Witschel M, Egli T (2001) Environmental fate and microbial degradation of aminopolycarboxylic acids. FEMS Microbiol Rev 25:69–106

    Article  CAS  Google Scholar 

  • Cleveland JM, Rees TF (1981) Characterization of plutonium in Maxey Flats radioactive trench leachates. Science 212:1506–1509

    Article  CAS  Google Scholar 

  • Egli T, Wilennmann H-U, El-Banna T, Auling G (1988) Gram-negative, aerobic, nitrilotriacetate-utilizing bacteria from wastewater and soil. Syst Appl Microbiol 10:297–305

    Google Scholar 

  • Engelbrecht RS, McKinney RE (1957) Activated sludge cultures developed on pure organic compounds. Sewag Industri Wast 29:1350–1362

    CAS  Google Scholar 

  • Firestone MK, Tiedje JM (1978) Pathway of degradation of nitrilotriacetate by Pseudomonas species. Appl Environ Microbiol 35:955–961

    CAS  Google Scholar 

  • Firestone MK, Tiedje JM (1975) Biodegradation of metal-nitrilotriacetate complexes by a Pseudomonas species: Mechanism of reaction. Appl Microbiol 29:758–764

    CAS  Google Scholar 

  • Frimmel FH, Grenz R, Kordik E, Dietz F (1989) Nitrilotriacetate (NTA) and Ethylenediaminetetraacetate (EDTA) in rivers of the Federal Republic of Germany. Vom Wasser 72:175–184

    CAS  Google Scholar 

  • Frimmel FH (1997) Physiochemical properties of ethylene dinitrilotetraacetic acid and consequences for its distribution in the aquatic environment. In: Schwager MJ (ed) Detergents in the environment. Marcel Dekker, New York, pp 289–312

    Google Scholar 

  • Gerhardt P, Murray RGE, Wood WA, Krieg NR (1994) Methods for general and molecular bacteriology. American Society for Microbilogy, Washington DC

    Google Scholar 

  • Gschwind N (1992) Biologischer Abbau von EDTA in einem Modellabwasser. Gwf Wasser Abwasser 133:546–549

    CAS  Google Scholar 

  • Henneken L, Nörtemann B, Hempel DC (1995) Influence of physiological conditions on EDTA degradation. Appl Microbiol Biotechnol 44:190–197

    Article  CAS  Google Scholar 

  • Henneken L, Nörtemann B, Hempel DC (1998) Biological degradation of EDTA: Reaction kinetics and technical approach. J Chem Technol Biotechnol 73:144–152

    Article  CAS  Google Scholar 

  • Kampfer P, Neef A, Salkinoj-Salonen MS, Busse H-J (2002) Chelatobacter heintzii (Auling et al. 1993) is a later subjective synonym of Aminobacter aminovorans (Urakami et al. 1992). IJSEM 52:835–839

  • Killey RWD, McHugh JA, Champ DR, Cooper EL, Young JL (1984) Subsurface cobalt-60 migration from a low-level waste disposal site. Environ Sci Technol 18:148–157

    Article  CAS  Google Scholar 

  • Kluner T (1996) Chemie und Biochemie des mikrobiellen EDTA-Abbaus. Ph.D. thesis. University of Paderborn, Cuvillier Verlag, Gottingen

  • Kluner T, Hempel DC, Nörtemann B (1998) Metabolism of EDTA and its metal chelates by whole cells and cell-free extracts of strain BNC1. Appl Microbiol Biotechnol 49:194–201

    Article  CAS  Google Scholar 

  • Liu Y, Louie TM, Payne J, Bohuslavek J, Bolton HJR, Xun L (2001) Identification, purification, and characterization of iminodiacetate oxidase from the EDTA-degrading bacterium BNC1. Appl Environ Microbiol 67:696–701

    Article  CAS  Google Scholar 

  • Madigan MT, Martinko JM, Parker J (2000) Brock: biology of microorganisms Prentice Hall, New York, p 603

  • Means JL, Crerar DA, Duguin JO (1978) Migration of radioactive wastes: radionuclide mobilization by complexing agents. Science 200:1477–1481

    Article  CAS  Google Scholar 

  • McCarty PL (1975) Stoichiometry of biological reactions. Prog Water Tech 7:157–172

    CAS  Google Scholar 

  • Nörtemann B (1992) Total degradation of EDTA by mixed cultures and a bacterial isolate. Appl Environ Microbiol 58:671–676

    Google Scholar 

  • Nörtemann B (1999) Mini-review: biodegradation of EDTA. Appl Environ Microbiol 51:751–759

    Google Scholar 

  • Nowack B (2002) Environmental chemistry of aminopolycarboxylate chelating agents. Environ Sci Technol 36:4009–4016

    Article  CAS  Google Scholar 

  • Parkes DG, Caruso MG, Spradling JEI (1981) Determination of nitrilotriacetic acid in ethylenediaminetetraacetic acid disodium salt by reversed-phase ion pair liquid chromatography. Anal Chem 53:2154–2156

    Article  CAS  Google Scholar 

  • Payne JW, Bolton HJR, Campbell JA, Xun L (1998) Purification and characterization of EDTA monooxygenase from the EDTA-degrading bacterium BNC1. J Bacteriol 180:3823–3827

    CAS  Google Scholar 

  • Pirt SJ (1975) Principles of microbe and cell cultivation. John Wiley, Sons, New York

    Google Scholar 

  • Riley RG, Zachara JM, Wobber FJ (1992) Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research. DOE report: DOE/ER-0547T. Washington, D.C.

  • Rittmann BE, McCarty PL (2001) Environmental biotechnology: principles and application. McCraw-Hill, New York

    Google Scholar 

  • Rutgers M, van der Gulden H, van Dam K (1989) Thermodynamic efficiency of bacterial growth calculated from growth yield of pseudomonas oxalaticus OX1 in the chemostat. Biochim Biophys Acta 973:302–307

    Article  CAS  Google Scholar 

  • Sacher F, Lochow E, Brauch H-J (1998) Synthetic organic complexing agents-analysis and occurrence in surface waters. Vom Wasser 90:31–41

    CAS  Google Scholar 

  • Schmidt CK, Fleig M, Sacher F, Brauch HJ (2004) Occurrence of aminopolycarboxylates in the aquatic environment of Germany. Environ Pollut 131:107–124

    Article  CAS  Google Scholar 

  • Sillanpaa M (1997) Environmental fate of EDTA and DTPA. Rev Environ Contam Toxicol 152:85–111

    CAS  Google Scholar 

  • Sillanpaa M, Vickackaite V, Niinisto L, Sihvonen. M-L. (1997) Distribution and transportation of ethylenediaminetetraacetic acid and diethylenetriaminepentaacetic acid in lake water and sediment. Chemosphere 35:2797–2805

    Article  CAS  Google Scholar 

  • Trijbels F, Vogles GD (1966) Degradation of allantoin by Pseudomonas acidovorans. Biochimica et Biophysica Acta 113:292–301

    CAS  Google Scholar 

  • Uetz T, Egli T (1993) Characterization of an inducible, membrane-bound iminodiacetate dehydrogenase from Chelatobacter heintzii ATCC 29600. Biodegradation 3:423–434

    Article  CAS  Google Scholar 

  • Uetz T, Schneider R, Snozzi M, Egli T (1992) Purification and characterization of a two-component monooxygenase that hydroxylates nitrilotriacetate from “chelatobacter” strain ATCC 296000. J Bacteriol 174:1179–1188

    CAS  Google Scholar 

  • VanBriesen JM (2001) Thermodynamic yield predictions for biodegradation through oxygenase activation reactions. Biodegradation 12(4):265–281

    Article  CAS  Google Scholar 

  • Weilenmann H-U, Engeli B, Bucheli-Witschel M, Egli T (2004) Isolation and growth characteristics of an EDTA-degrading member of the -subclass of Proteobacteria. Biodegradation 15:289–301

    Article  CAS  Google Scholar 

  • Wilkinson SG (1970) Cell walls of Pseudomonas species sensitvie to ethylenediaminetetraacetic acid. J Bacteriol 104:1035–1044

    CAS  Google Scholar 

  • Witschel MHU, Weilenmann H-U, Egli T (1995) Degradation of EDTA by a bacterial isolate. Poster presented at the 54 annual meeting of the Swiss Society for Microbiology, Lugano

  • Wolf K, Gilbert PA (1992) EDTA-ethylenediaminetetraacetic acid. In: Hutzinger O (ed) The handbook of environmental chemistry, vol 3. Springer, Berlin, pp 241–259

    Google Scholar 

  • Woodiwiss CR, Walker RD, Brownridge FA (1979) Concentration of nitrilotriacetate and certain metals in Canadian wastewaters and streams. Water Res 13:599–612

    Article  CAS  Google Scholar 

  • Xiao J, VanBriesen JM (2005) Expanded thermodynamic model for microbial yield prediction. Biotechol Bioeng 93(1):110–121

    Article  CAS  Google Scholar 

  • Xu Y, Mortimer MW, Fisher TS, Kahn ML, Brockman FJ, Xun L (1997) Cloning, sequencing, and analysis of a gene cluster from Chelatobacter heintzii ATCC 29600 encoding nitrilotriacetate monooxygenase and NADH:flavin mononucleotide oxidoreductase. J Bacteriol 179:1112–1116

    CAS  Google Scholar 

  • Yuan Z, VanBriesen JM (2002) Yield prediction and stoichiometry of multi-step biodegradation reactions involving oxygenation. Biotechnol Bioeng 80:100–113

    Article  CAS  Google Scholar 

  • Yuan Z, VanBriesen JM (2005) Analysis of biodegradation intermediates of ethylenediaminetetraacetate (EDTA) and nitrilotriacetate (NTA) by high performance liquid chromatography (HPLC). In: Nowack B, VanBriesen JM (eds) Biogeochemistry of Chelating Agent, American Chemical Society Symposium Series No. 910 American Chemical Society, Washington, D.C, pp 139–148

  • Yuan Z, VanBriesen JM (2006) The formation of intermediates in EDTA and NTA biodegradation. Env Eng Sci 23(3):533–544

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation through the division of Bioengineering and Environmental Systems under grant BES-0092463. The authors gratefully acknowledge the gift of the EDTA degrading co-culture BNC1-BNC2 from Dr. Harvey Bolton, Jr., Pacific Northwest National Laboratory, USA, and Dr. Bernd Nörtemann, Technical University of Braunschweig, Germany. The authors gratefully acknowledge the gift of ED3A from Hampshire Chemicals, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwen Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, Z., VanBriesen, J.M. Bacterial growth yields on EDTA, NTA, and their biodegradation intermediates. Biodegradation 19, 41–52 (2008). https://doi.org/10.1007/s10532-007-9113-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-007-9113-y

Keywords

Navigation