Skip to main content

Advertisement

Log in

Modelling potential Pleistocene habitat corridors between Afromontane forest regions

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

The unusually high floral and faunal similarity between the different regions of the Afromontane archipelago has been noted by biogeographers since the late 1800s. A possible explanation for this similarity is the spread of montane habitat into the intervening lowlands during the glacial periods of the Pleistocene, allowing biotic exchange between mountain ranges. In this study, we sought to infer the existence and most likely positions of these potential habitat corridors. We focused on sixteen Afromontane endemic tree, shrub, and bird species in the Cameroon Volcanic Line, East African Rift and Great Escarpment. Species were chosen based on distribution above 1200–1500 m in at least two of the major Afromontane regions. Ecological niche models were developed for each species in the present and projected to the mid-Holocene and the last glacial maximum (LGM). Models were thresholded to create binary maps of presence/absence and then summed across taxa to estimate potential LGM and mid-Holocene distributions. We found widespread climatic suitability for our montane taxa throughout the lowlands of Central Africa during the LGM, connecting all regions of the Afromontane archipelago except the Ethiopian Highlands and the Dahomey Gap. During the mid-Holocene, we noted more limited climatic suitability for fewer species in lowland areas. Although we set out to test predictions derived from alternatively hypothesized corridors, we instead found widespread climatic suitability connecting Afromontane regions across the entire Congo Basin for all species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

The data analysed during the current study can be found at the GBIF search DOIs: http://doi.org/10.15468/dl.chilmj, http://doi.org/10.15468/dl.y8gcwz, http://doi.org/10.15468/dl.zepi4n, http://doi.org/10.15468/dl.xw40dj, http://doi.org/10.15468/dl.ju9mu4, http://doi.org/10.15468/dl.oyavyx, http://doi.org/10.15468/dl.v4g9ms

References

  • Allen JRM, Forrest M, Hickler T, Singarayer JS, Valdes PJ, Huntley B (2020) Global vegetation patterns of the past 140,000 years. J Biogeogr 00:1–18

    Google Scholar 

  • Anderson RP, Lew D, Peterson AT (2003) Evaluating predictive models of species’ distributions: Criteria for selecting optimal models. Ecol Model 162:211–232

    Article  Google Scholar 

  • Anhuf D (2000) Vegetation history and climate changes in Africa north and south of the equator (10 S to 10 N) during the last glacial maximum. In Smolka PP, Volkheimer W (Eds.) Southern Hemisphere Paleo-and Neoclimates. Berlin, Heidelberg.

  • Anhuf D, Ledru MP, Behling H, Da Cruz Jr FW, Cordeiro RC, Van der Hammenn T, Karmann I, Marengo JA, De Oliviera PE, Pessenda L, Siffedine A, Albuquerque AL, Da Silva Dias PL (2006) Paleo-environmental change in Amazonian and African rainforest during the LGM. Palaeogeogr Palaeoclimatol Palaeoecol 239:510–527

    Article  Google Scholar 

  • Blackburn DC, Measey GJ (2009) Dispersal to or from an African biodiversity hotspot? Mol Ecol 18:1904–1915

    Article  CAS  PubMed  Google Scholar 

  • Born C, Alvarez N, McKey D, Ossari S, Wickings EJ, Hossaert-McKey M, Chevallier M-H (2011) Insights into the biogeographical history of the Lower Guinea Forest Domain: Evidence for the role of refugia in the intraspecific differentiation of Aucoumea klaineana. Mol Ecol 20:131–142

    Article  PubMed  Google Scholar 

  • Büchi L, Vuilleumier S (2014) Coexistence of specialist and generalist species is shaped by dispersal and environmental factors. Am Nat 183:612–624

    Article  PubMed  Google Scholar 

  • Budde KB, González-Martínez SC, Hardy OJ, Heuertz M (2013) The ancient tropical rainforest tree Symphonia globulifera L. f. (Clusiaceae) was not restricted to postulated Pleistocene refugia in Atlantic Equatorial Africa. Heredity 111:66–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bush MB, Rivera R (2001) Reproductive ecology and pollen representation among neotropical trees. Glob Ecol Biogeogr 10:359–367

    Article  Google Scholar 

  • Bussmann RW (2004) Regeneration and succession patterns in African, Andean and Pacific tropical mountain forests: the role of natural and anthropogenic disturbance. Lyonia 6:93–111

    Google Scholar 

  • Caratini C, Giresse P (1979) Contribution palynologique à la connaissance des environnements continentaux et marins du Congo à la fin du Quaternaire. C R Acad Sci 288:379–382

    Google Scholar 

  • Carlquist S (1966) The biota of long-distance dispersal. I. Principles of dispersal and evolution. Q Rev Biol 41:247–270

    Article  CAS  PubMed  Google Scholar 

  • Cobos ME, Peterson AT, Barve N, Osorio-Olvera L (2019) Kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ 7:e6281

    Article  PubMed  PubMed Central  Google Scholar 

  • Coetzee JA (1964) Evidence for a considerable depression of the vegetation belts during the Upper Pleistocene on the East African mountains. Nature 204:564–566

    Article  Google Scholar 

  • Coetzee JA, Van Zinderen Bakker EM (1970) Paleoecological problems of the Quaternary of Africa. S Afr J Sci 66:78–84

    Google Scholar 

  • Cooper JC, Maddox JD, McKague K, Bates JM (2021) Multiple lines of evidence indicate ongoing allopatric and parapatric diversification in an Afromontane sunbird (Cinnyris reichenowi). Ornithology 138:ukaa081

    Article  Google Scholar 

  • Cooper TJ, Wannenburgh AM, Cherry MI (2017) Atlas data indicate forest dependent bird species declines in South Africa. Bird Conserv Int 27:337–354

    Article  Google Scholar 

  • Couvreur TLP, Dauby G, Blach-Overgaard A, Deblauwe V, Dessein S, Droissart V, Hardy OJ, Harris DJ, Janssens SB, Ley AC, Mackinder BA, Sonké B, Sosef MSM, Stévart T, Svenning J-C, Wieringa JJ, Faye A, Missoup AD, Tolley KA, Nicolas V, Ntie S, Fluteau F, Robin C, Guillocheau F, Barboni D, Sepulchre P (2020) Tectonics, climate and the diversification of the tropical African terrestrial flora and fauna. Biol Rev 00:00–00

    Google Scholar 

  • Daïnou K, Bizoux J-P, Doucet J-L, Mahy G, Hardy OJ, Heuertz M (2010) Forest refugia revisited: NSSRs and cpDNA sequences support historical isolation in a wide-spread African tree with high colonization capacity, Milicia excelsa (Moracea). Mol Ecol 19:4462–4477

    Article  PubMed  Google Scholar 

  • Darlington PJ (1957) Zoogeography: the geographical distribution of animals. Wiley, New York

    Google Scholar 

  • Dauby G, Duminil J, Heuertz M, Hardy OJ (2010) Chloroplast DNA polymorphism and phylogeography of a Central African tree species widespread in mature rainforest: Greenwayodendron suaveolens (Annonaceae). Trop Plant Biol 3:4–13

    Article  CAS  Google Scholar 

  • del Hoyo J, Elliott A, Christie D (2004) Handbook of the Birds of the World. Vol. 9: Cotingas to Pipits and Wagtails. Barcelona, Spain.

  • del Hoyo J, Elliott A, Christie D (2005) Handbook of the birds of the world, vol 10: Cuckoo-shrikes to Thrushes. Lynx Edicions, Barcelona

  • del Hoyo J, Elliott A, Christie D (2006) Handbook of the birds of the world, vol 11: Old World Flycatcher's to the Old World Warblers. Lynx Edicions, Barcelona

  • del Hoyo J, Elliott A, Christie D (2007) Handbook of the birds of the world, vol 12: Picathartes to Tits and Chickadees. Lynx Edicions, Barcelona

  • del Hoyo J, Elliott A, Christie D (2008) Handbook of the birds of the world, vol 13: Penduline-tits to Shrikes. Lynx Edicions, Barcelona

  • del Hoyo J, Elliott A, Christie D (2009) Handbook of the birds of the world, vol 14: Bush-shrikes to Old World Sparrows. Lynx Edicions, Barcelona

  • del Hoyo J, Elliott A, Christie D (2010) Handbook of the birds of the world, vol 15: Weavers to New World Warblers. Lynx Edicions, Barcelona

  • deMenocal PB (2004) African climate change and faunal evolution during the Pliocene-Pleistocene. Earth Planet Sci Lett 220:3–24

    Article  CAS  Google Scholar 

  • Demenou BB, Doucet JL, Hardy OJ (2018) History of the fragmentation of the African rain forest in the Dahomey Gap: Insight from the demographic history of Terminalia superba. Heredity 120:547–561

    Article  PubMed  Google Scholar 

  • Devos N, Barker NP, Nordenstam B, Mucina L (2010) A multi-locus phylogeny of Euryops (Asteraceae, Senecioneae) augments support for the “Cape to Cairo” hypothesis of floral migrations in Africa. Taxon 59:57–67

    Article  Google Scholar 

  • Devitt TJ, Devitt SEC, Hollingsworth BD, McGuire JA, Moritz C (2013) Montane refugia predict population genetic structure in the Large-blotched Ensatina salamander. Mol Ecol 22:1650–1665

    Article  PubMed  Google Scholar 

  • Duminil J, Mona S, Mardulyn P, Doumenge C, Walmacq F, Doucet J-L, Hardy OJ (2015) Late Pleistocene molecular dating of past population fragmentation and demographic changes in African rain forest tree species supports the forest refuge hypothesis. J Biogeogr 42:1443–1454

    Article  Google Scholar 

  • Dupont LM, Donner B, Schneider R, Wefer G (2001) Mid-Pleistocene environmental change in tropical Africa began as early as 1.05 Ma. Geology 29:195–198

    Article  CAS  Google Scholar 

  • Elenga H, Schwartz D, Vincens A (1994) Pollen evidence of late Quaternary vegetation and inferred climate changes in Congo. Palaeogeogr Palaeoclimatol Palaeoecol 109:345–356

    Article  Google Scholar 

  • Farwig N, Böhning-Gaese K, Bleher B (2006) Enhanced seed dispersal of Prunus africana in fragmented and disturbed forests? Oecologia 147:238–252

    Article  PubMed  Google Scholar 

  • Faye A, Deblauwe V, Mariac C, Richard D, Sonké B, Vigouroux Y, Couvreur T (2016) Phylogeography of the genus Podococcus (Palmae/Arecaceae) in Central African rain forests: climate stability predicts unique genetic diversity. Mol Phylogenet Evol 105:126–138

    Article  CAS  PubMed  Google Scholar 

  • Feder JL, Egan SP, Nosil P (2012) The genomics of speciation-with-gene-flow. Trends Genet 28:342–350

    Article  CAS  PubMed  Google Scholar 

  • Fjeldså J, Bowie RC (2008) New perspectives on the origin and diversification of Africa’s forest avifauna. Afr J Ecol 46:235–247

    Article  Google Scholar 

  • Fuchs J, Bowie RC (2015) Concordant genetic structure in two species of woodpecker distributed across the primary West African biogeographic barriers. Mol Phylogenet Evol 88:64–74

    Article  PubMed  Google Scholar 

  • Gomez C, Dussert S, Hamon P, Hamon S, de Kochko A, Poncet V (2009) Current genetic differentiation of Coffea canephora Pierre ex. A. Froehn in Guineo-Congolian African zone: cumulative impact of ancient climatic changes and recent human activities. BMC Evol Biol 9:167

  • Hall JB (1973) Vegetational zones on the southern slopes of Mount Cameroon. Vegetation 27:49–69

    Article  Google Scholar 

  • Hanski I, Gyllenberg M (1997) Uniting two general patterns in the distribution of species. Science 275:397–400

    Article  CAS  PubMed  Google Scholar 

  • Hardy OJ, Born C, Budde K, Daïnou K, Dauby G, Duminil J, Ewédjé E-EBK, Gomez C, Heuertz M, Koffi GK, Lowe AJ, Micheneau C, Ndiade-Bourobou D, Piñeiroa R, Poncet V (2013) Comparative phylogeography of African rain forest trees: a review of genetic signatures of vegetation history in the Guineo-Congolian region. C R Geosci 345:284–296

    Article  Google Scholar 

  • Hedberg O (1969) Evolution and speciation in a tropical high mountain flora. Biol J Linn Soc 1:135–148

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • IUCN (2020) The IUCN Red List of Threatened Species. Version 2020-2. https://www.iucnredlist.org

  • Janeček S, Hrázský Z, Bartoš M, Brom J, Reif J, Hořák D, Bystřická D, Riegert J, Sedláček O, Pešata M (2007) Importance of big pollinators for the reproduction of two Hypericum species in Cameroon, West Africa. Afr J Ecol 45:607–613

    Article  Google Scholar 

  • Johnson SD, Brown M (2004) Transfer of pollinaria on birds’ feet: a new pollination system in orchids. Plant Syst Evol 244:181–188

    Article  Google Scholar 

  • Kadu CAC, Schueler S, Konrad H, Muluvi GMM, Eyog-Matig O, Muchugi A, Williams Vl, Ramamonjisoa L, Kapinga C, Foahom B, Katsvanga C. Hafashimana D, Obama C, Geburek T (2011) Phylogeography of the Afromontane Prunus africana reveals a former migration corridor between East and West African highlands. Mol Ecol 20:165–178

  • Kaplin BA, Munyaligoga V, Moermond TC (1998) The influence of temporal changes in fruit availability on diet composition and seed handling in blue monkeys (Cercopithecus mitis doggetti). Biotropica 30:56–71

    Article  Google Scholar 

  • Kingdon J (1989) Island Africa. Princeton University Press, Princeton

  • Languy M, Motombe FN (2003) Birds of Takamanda Forest Reserve, Cameroon. In Cominskey JA, Sunderland TCH, Sunderland-Groves JL (eds) Takamanda: the biodiversity of an African Rainforest. SI/MAB: Smithsonian Institution/Monitoring and Assessment of Biodiversity Series #8. Washington DC

  • Lester SE, Ruttenberg BI, Gaines SD, Kinlan BP (2007) The relationship between dispersal ability and geographic range size. Ecol Lett 10:745–758

    Article  PubMed  Google Scholar 

  • Ley AC, Dauby G, Köhler J, Wypior C, Röser M, Hardy OJ (2014) Comparative phylogeography of eight herbs and lianas (Marantaceae) in central African rainforests. Front Genet 5:403

    Article  PubMed  PubMed Central  Google Scholar 

  • Ley AC, Heuertz M, Hardy OJ (2016) The evolutionary history of Central African rain forest plants: phylogeographical insights from sister species in the climber genus Haumania (Marantaceae). J Biogeogr 44:308–321

  • Linder HP (1983) The historical phytogeography of the Disinae (Orchidaceae). Bothalia 14:565–570

    Article  Google Scholar 

  • Livingstone DA (1975) Late Quaternary climatic change in Africa. Annu Rev Ecol Evol Syst 6:249–280

    Article  Google Scholar 

  • Lowe AJ, Harris D, Dormontt E, Dawson IK (2010) Testing putative African tropical forest refugia using chloroplast and nuclear DNA phylogeography. Trop Plant Biol 3:50–58

    Article  Google Scholar 

  • Maisels F, Forboseh P (1999) The Kilum/Ijim forest project: biodiversity monitoring in the montane forests of Cameroon. Bull Afr Bird Club 6:110–114

    Article  Google Scholar 

  • Maley J (1987) Fragmentation de la forêt dense humide africaine et extension des biotopes montagnards au Quaternaire récent: Nouvelles données polliniques et chronologiques, implications paléoclimatiques et biogéographiques. Palaeoecol Afr 18:307–334

    Google Scholar 

  • Maley J (1989) Late Quaternary climatic changes in the African rain forest: forest refugia and the major role of sea surface temperature variations. In: Wagenbach D, Geis K, Leinen M, Sarnthein M (eds) Paleoclimatology and paleometeorology: modern and past patterns of global atmospheric transport. Springer, Dordrecht

    Google Scholar 

  • Maley J (1991) The African rain forest vegetation and palaeoenvironments during late Quaternary. Climate Chang 19:79–98

    Article  Google Scholar 

  • Maley J (1997) Middle to Late Holocene changes in tropical Africa and other continents: Paleomonsoon and sea surface temperature variations. In: Weiss H, Kukla G, Dalfes HN (eds) Third millennium BC climate change and Old World collapse. Springer, Berlin

    Google Scholar 

  • Marchant R, Hooghiemstra H (2004) Rapid environmental change in African and South American tropics around 4000 years before present: a review. Earth-Sci Rev 66:217–260

    Article  Google Scholar 

  • Martin SH, Dasmahapatra KK, Nadeau NJ, Salazar C, Walters JR, Simpson F, Blaxter M, Manica A, Mallet J, Jiggins CD (2013) Genome-wide evidence for speciation with gene flow in Heliconius butterflies. Genome Res 23:1817–1828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menke S, Böhning-Gaese K, Schleuning M (2012) Plant-frugivore networks are less specialized and more robust at forest-farmland edges than in the interior of a tropical forest. Oikos 121:1553–1566

    Article  Google Scholar 

  • Meseguer AS, Aldasoro JJ, Sanmartín I (2013) Bayesian inference of phylogeny, morphology and range evolution reveals a complex evolutionary history in St. John’s wort (Hypericum). Mol Phylogenet Evol 67:379–403

    Article  PubMed  Google Scholar 

  • Migliore J, Lézine AM, Hardy OJ (2020) The recent colonization history of the most widespread Podocarpus tree species in Afromontane forests. Ann Bot 126:73–83

    Article  CAS  PubMed  Google Scholar 

  • Mikula O, Nicolas V, Šumbera R, Konečný A, Denys C, Verheyen E, Bryjová A, Lemmon AR, Lemmon EM, Bryja J (2021) Nuclear phylogenomics, but not mitogenomics, resolves the most successful Late Miocene radiation of African mammals (Rodentia: Muridae: Arvicanthini). Mol Phylogenet Evolution 157:107069

    Article  Google Scholar 

  • Mittermeier RA, Turner WR, Larsen FW, Brooks TM, Gascon C (2011) Global biodiversity conservation: the critical role of hotspots. In: Zachos H (ed) Biodiversity hotspots: distribution and protection of conservation priority areas. Springer, Berlin

    Google Scholar 

  • Moreau RE (1963) Vicissitudes of the African biomes in the late Pleistocene. Proc Zool Soc Lond 141:395–421

    Article  Google Scholar 

  • Moreau RE (1966) The birds faunas of Africa and its islands. Academic Press, New York

    Google Scholar 

  • Mutke J, Barthlott W (2005) Patterns of vascular plant diversity at continental to global scales. Biol Skr 55:521–531

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  Google Scholar 

  • Newmark WD, Mkongewa VJ, Amundsen DL, Welch C (2020) African sunbirds predominantly pollinate plants useful to humans. Condor 122(2):duz070

    Article  Google Scholar 

  • Njabo KY, Sorenson MD (2009) Origin of Bannerman’s turaco Tauraco bannermani in relation to historical climate change and the distribution of West African montane forests. Ostrich 80:1–7

    Article  Google Scholar 

  • Nosil P (2008) Speciation with gene flow could be common. Mol Ecol 17:2103–2106

    Article  PubMed  Google Scholar 

  • Nsor CA, Godsoe W, Chapman HM (2019) Promiscuous pollinators—evidence from an Afromontane sunbird–plant pollen transport network. Biotropica 51:538–548

    Article  Google Scholar 

  • Owens HL, Campbell LP, Dornak LL, Saupe EE, Barve N, Soberón J, Ingenloff K, Lira-Noriega A, Hensz CM, Myers CE, Peterson AT (2013) Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecol Model 263:10–18

    Article  Google Scholar 

  • Peterson AT, Ammann CM (2013) Global patterns of connectivity and isolation of populations of forest bird species in the late Pleistocene. Glob Ecol and Biogeogr 22:596–606

    Article  Google Scholar 

  • Peterson AT, Papeş M, Soberón J (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol Model 213:63–72

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Pokorny L, Riina R, Mairal M, Meseguer AS, Culshaw V, Cendoya J, Serrano M, Carbajal R, Ortiz S, Heuertz M, Sanmartín I (2015) Living on the edge: timing of Rand Flora disjunctions congruent with ongoing aridification in Africa. Front Genet 6:154

    Article  PubMed  PubMed Central  Google Scholar 

  • Poynton JC (1999) Distribution of amphibians in sub-Saharan Africa, Madagascar, and Seychelles. In: Duellman WD (ed) Patterns of distribution of amphibians, a global perspective. John Hopkins University Press, Baltimore

    Google Scholar 

  • Prigogine A (1987) Disjunctions of montane forest birds in the Afrotropical Region. Bonn Zool Beitr 38:195–207

    Google Scholar 

  • Reichenow A (1900) Die Vögel Afrikas. Neudamm

  • Reyes-Velasco J, Manthey JD, Freilich X, Boissinot S (2018) Diversification of African tree frogs (genus Leptopelis) in the highlands of Ethiopia. Mol Ecol 27:2256–2270

    Article  CAS  PubMed  Google Scholar 

  • Salzmann U, Hoelzmann P (2005) The Dahomey Gap: an abrupt climatically induced rain forest fragmentation in West Africa during the late Holocene. Holocene 15:190–199

    Article  Google Scholar 

  • Schmitt CB, Denich M, Demissew S, Friis I, Boehmer HJ (2010) Floristic diversity in fragmented Afromontane rainforests: altitudinal variation and conservation importance. Appl Veg Sci 13:291–304

    Google Scholar 

  • Serle W (1964) The lower altitudinal limit of the montane forest birds of the Cameroon Mountain, West Africa. Bull Br Ornithol Club 84:87–91

    Google Scholar 

  • Sharpe RB (1893) On the zoo-geographical areas of the world illustrating the distribution of birds. Academic Press, London

  • Silva SM, Peterson AT, Carneiro L, Burlamaqui TCT, Ribas CC, Sousa-Neves T, Miranda LM, Fernandes AM, d'Horta FM, Araújo-Silva LE, Batista R, Bandeira CHMM, Dantas SM, Ferreira M, Martins DM, Oliveira J, Rocha TC, Sardelli CH, Thom G, Rêgo PS, Santos MP, Sequeira F, Vallinoto M, Aleixo A (2019) A dynamic continental moisture gradient drove Amazonian bird diversification. Sci Adv 5:eaat5752

  • Šmíd J, Mazuch T, Nováková L, Modrý D, Malonza PK, Elmi HSA, Carranza S, Moravec J (2019) Phylogeny and systematic revision of the gecko genus Hemidactylus from the Horn of Africa (Squamata: Gekkonidae). Herpetol Monogr 33:26–47

    Article  Google Scholar 

  • Taylor PJ, Maree S, Cotterill FP, Missoup AD, Nicolas V, Denys C (2014) Molecular and morphological evidence for a Pleistocene radiation of laminate-toothed rats (Otomys: Rodentia) across a volcanic archipelago in equatorial Africa. Biol J Linn Soc 113:320–344

    Article  Google Scholar 

  • Tesfaye D, Fashing PJ, Bekele A, Mekonnen A, Atickem A (2013) Ecological flexibility in Boutourlini’s blue monkeys (Cercopithecus mitis boutourlinii) in Jibat Forest, Ethiopia: a comparison of habitat use, ranging behavior, and diet in intact and fragmented forest. Int J Primatol 34:615–640

    Article  Google Scholar 

  • Ting N (2008) Mitochondrial relationships and divergence dates of the African colobines: evidence of Miocene origins for the living colobus monkeys. J Hum Evol 55:312–325

    Article  PubMed  Google Scholar 

  • Tosi AJ (2008) Forest monkeys and Pleistocene refugia: a phylogeographic window onto the disjunct distribution of the Chlorocebus lhoesti species group. Zool J Linnean Soc 154:408–418

    Article  Google Scholar 

  • Travers SL, Jackman TR, Bauer AM (2014) A molecular phylogeny of Afromontane dwarf geckos (Lygodactylus) reveals a single radiation and increased species diversity in a South African montane center of endemism. Mol Phylogenet Evol 80:31–42

    Article  PubMed  Google Scholar 

  • Urban EK, Fry CH, Keith S (1997) The birds of Africa, vol V. Academic Press, London

    Google Scholar 

  • Van Zinderen Bakker EM, Clark JD (1962) Pleistocene climates and cultures in north-eastern Angola. Nature 196:639–642

    Article  Google Scholar 

  • Van Zinderen Bakker EM, Coetzee JA (1972) A re-appraisal of late-Quaternary climatic evidence from tropical Africa. Palaeoecol Afr 7:151–181

    Google Scholar 

  • Vaz da Silva B (2015) Evolutionary history of the birds of the Angolan Highlands—the missing piece to understand the biogeography of the Afromontane forests (Unpublished master's thesis). University of Porto, Porto

  • Warren DL, Seifert SN (2011) Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl 21:335–342

    Article  PubMed  Google Scholar 

  • White F (1978) The afromontane region. In: Werger MJA (ed) Biogeography and ecology of Southern Africa. Monographiae Biologicae, vol 31. Springer, Dordrecht

  • White F (1981) The history of the Afromontane archipelago and the scientific need for its conservation. Afr J Ecol 19:33–54

    Article  Google Scholar 

  • White F (1983) Long-distance dispersal and the origins of the Afromontane flora. Sonderbande Des Naturwissenschaftlichen Vereins in Hamburg 7:87–116

    Google Scholar 

  • White F (1993) Refuge theory, ice-age aridity and the history of tropical biota: an essay in plant geography. Fragm Florist Geobot Supp 2:385–409

    Google Scholar 

  • Wickens GE (1976) Speculations on long distance dispersal and the flora of Jebel Marra, Sudan Republic. Kew Bull 31:105–150

    Article  Google Scholar 

  • Williams S, Vivero Pol JL, Spawls S, Shimelis A, Kelbessa E (2004) Ethiopian highlands. In: Mittermeier RA, Robles-Gil P, Hoffmann M, Pilgrim JD, Brooks TM, Mittermeier CG, Fonseca G (eds) Hotspots revisited: earth’s biologically richest and most endangered ecoregions. Mexico City, Mexico

  • Wilson RJ, Thomas CD, Fox R, Roy DB, Kunin WE (2004) Spatial patterns in species distributions reveal biodiversity change. Nature 432:393–396

    Article  CAS  PubMed  Google Scholar 

  • Yannic G, Pellissier L, Ortego J, Lecomte N, Couturier S, Cuyler C, Dussault C, Hundertmark KJ, Irvine RJ, Jenkins DA, Kolpashikov L, Mager K, Musiani M, Parker KL, Røed KH, Sipko T, Þórisson SG, Weckworth BV, Guisan A, Bernatchez L, Côté SD (2014) Genetic diversity in caribou linked to past and future climate change. Nat Clim Chang 4:132–137

    Article  Google Scholar 

  • Zinner D, Atickem A, Beehner JC, Bekele A, Bergman TJ, Burke R, Dolotovskaya S, Fashing PJ, Gippoliti S, Knauf S, Knauf Y, Mekonnen A, Moges A, Nguyen N, Stenseth NC, Roos C (2018) Phylogeography, mitochondrial DNA diversity, and demographic history of geladas (Theropithecus gelada). PLoS ONE 13:e0202303

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Moses Sainge for advice on Afromontane tree and shrub distributions; Marlon Cobos for assistance with niche modelling in R; and the University of Kansas Ecological Niche Modelling (KUENM) group for their feedback on this project.

Funding

No funding to declare.

Author information

Authors and Affiliations

Authors

Contributions

KEA, RMB and ATP conceived the ideas; KEA, WPTN, BF, and JCC collected and analysed the data; and KEA led the writing, with assistance from RMB, ATP, WPTN, and JCC.

Corresponding author

Correspondence to Kaitlin E. Allen.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

All procedures involving animals followed approved IACUC protocols and were conducted with the appropriate permits.

Additional information

Communicated by David Hawksworth.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allen, K.E., Tapondjou, W.P., Freeman, B. et al. Modelling potential Pleistocene habitat corridors between Afromontane forest regions. Biodivers Conserv 30, 2361–2375 (2021). https://doi.org/10.1007/s10531-021-02198-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-021-02198-4

Keywords

Navigation