Wildlife winners and losers of extensive small-livestock farming: a case study in the South African Karoo

Abstract

Extensive farming is an important source of food and fibre and often the only viable land use in the more arid regions of the globe. Yet, land use transformation for livestock grazing can lead to natural habitat degradation and fragmentation, identified as the main threats to biodiversity worldwide. Understanding which species are “winners” (i.e. species with a higher relative abundance index on farmland than protected area) and “losers” (i.e. species that have been extirpated or have a lower relative abundance index on farmland) in farming landscapes is crucial for the global sustainability of food production and biodiversity conservation. We used camera traps across 332 locations, over 23,796 trap nights to compare species richness and several aspects of community diversity (evenness, dominance, functional diversity and community structure) on 22 extensive small-livestock farms and a nearby protected area in the semi-arid region of the Karoo, South Africa. Species richness was not significantly different between the two land uses, but there were important differences in community structure and composition. Large carnivores were the “losers” of extensive livestock farming. Farmland displayed a lower effective number of species and functional diversity and a higher dominance than the protected area. The latter had a positive influence on the presence of large mammals and on the relative abundance of the region’s main mesopredator, the black-backed jackal (Canis mesomelas). Contrary to consensus, extensive small-livestock farming may be beneficial to some species and may therefore represent an important opportunity for biodiversity conservation outside of formally protected areas.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ahumada JA, Silva CEF, Gajapersad K et al (2011) Community structure and diversity of tropical forest mammals: data from a global camera trap network. Philos Trans R Soc Lond B 366:2703–2711. https://doi.org/10.1098/rstb.2011.0115

    Article  Google Scholar 

  2. Apps P (2012) Smithers mammals of Southern Africa, 4th edn. Random House Struik, Cape Town

    Google Scholar 

  3. Balmford A, Green RE, Scharlemann JPW (2005) Sparing land for nature: exploring the potential impact of changes in agricultural yield on the area needed for crop production. Glob Chang Biol 11:1594–1605. https://doi.org/10.1111/j.1365-2486.2005.001035.x

    Article  Google Scholar 

  4. Barnard P, Brown CJ, Jarvis AM et al (1998) Extending the Namibian protected area network to safeguard hotspots of endemism and diversity. Biodivers Conserv 7:531–547. https://doi.org/10.1023/A:1008831829574

    Article  Google Scholar 

  5. Berger WH, Parker FL (1970) Diversity of planktonic foraminifera in deep-sea sediments. Science 168:1345–1347. https://doi.org/10.1126/science.168.3937.1345

    Article  CAS  PubMed  Google Scholar 

  6. Blaum N, Rossmanith E, Popp A, Jeltsch F (2007) Shrub encroachment affects mammalian carnivore abundance and species richness in semiarid rangelands. Acta Oecologica 31:86–92. https://doi.org/10.1016/j.actao.2006.10.004

    Article  Google Scholar 

  7. Boshoff A, Landman M, Kerley G (2016) Filling the gaps on the maps: historical distribution patterns of some larger mammals in part of southern Africa. Trans R Soc S Afr 71:23–87. https://doi.org/10.1080/0035919X.2015.1084066

    Article  Google Scholar 

  8. Brand M, Schutte-Vlok A, Huisamen J (2018) Anysberg nature reserve and world heritage site. Protected area management plan 2018–2028. Cape Town

  9. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  10. Child M, Roxburgh L, Do Linh San E, et al (2016) The red list of mammals of South Africa, Swaziland and Lesotho

  11. Colwell RK, Mao CX, Chang J (2004) Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85:2717–2727. https://doi.org/10.2307/3450430

    Article  Google Scholar 

  12. Colyn RB, Radloff FGT, O’Riain MJ (2018) Camera trapping mammals in the scrubland’s of the Cape Floristic Kingdom—the importance of effort, spacing and trap placement. Biodivers Conserv 27:503–520. https://doi.org/10.1007/s10531-017-1448-z

    Article  Google Scholar 

  13. Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310. https://doi.org/10.1126/science.199.4335.1302

    Article  CAS  Google Scholar 

  14. Convention on Biological Diversity-Republic of South Africa (2014) South Africa’s fifth annual report

  15. Cromsigt JPGM, Prins HHT, Olff H (2009) Habitat heterogeneity as a driver of ungulate diversity and distribution patterns: interaction of body mass and digestive strategy. Divers Distrib 15:513–522. https://doi.org/10.1111/j.1472-4642.2008.00554.x

    Article  Google Scholar 

  16. Cusack JJ, Dickman AJ, Rowcliffe JM et al (2015) Random versus game trail-based camera trap placement strategy for monitoring terrestrial mammal communities. PLoS ONE 10:1–14. https://doi.org/10.1371/journal.pone.0126373

    CAS  Article  Google Scholar 

  17. Darkoh MBK (2003) Regional perspectives on agriculture and biodiversity in the drylands of Africa. J Arid Environ 54:261–279. https://doi.org/10.1006/jare.2002.1089

    Article  Google Scholar 

  18. Dean RJ, Milton SJ (1999) The Karoo: ecological patterns and processes. Cambridge University Press, Cambridge

    Google Scholar 

  19. Dean WRJ, Hoffinan MT, Meadows ME, Milton SJ (1995) Desertification in the semi-arid Karoo, South Africa: review and reassessment. J Arid Environ 30:247–264. https://doi.org/10.1016/S0140-1963(05)80001-1

    Article  Google Scholar 

  20. DeFries R, Hansen A, Turner BL et al (2007) Land use change around protected areas: management to balance human needs and ecological function. Ecol Appl 17:1031–1038

    Article  PubMed  Google Scholar 

  21. Delgado CL (2003) Rising consumption of meat and milk in developing countries has created a new food revolution. J Nutr 133:3907S–3910S. https://doi.org/10.1093/jn/133.11.3907S

    Article  CAS  PubMed  Google Scholar 

  22. Desmet PG, Cowling RM (1999) The climate of the Karoo—a functional approach. In: Dean WRJ, Milton SJ (eds) The Karoo—ecological patterns and processes, 1st edn. Cambridge University Press, Cambridge, pp 3–16

    Google Scholar 

  23. Dickman AJ, Macdonald EA, Macdonald DW (2011) A review of financial instruments to pay for predator conservation and encourage human-carnivore coexistence. Proc Natl Acad Sci USA 108:13937–13944. https://doi.org/10.1073/pnas.1012972108

    Article  PubMed  Google Scholar 

  24. Drouilly M, Clark A, O’Riain MJ (2018a) Multi-species occupancy modelling of mammal and ground bird communities in rangeland in the Karoo: a case for dryland systems globally. Biol Conserv 224:16–25. https://doi.org/10.1016/j.biocon.2018.05.013

    Article  Google Scholar 

  25. Drouilly M, Nattrass N, O’Riain MJ (2018b) Dietary niche relationships among predators on farmland and a protected area. J Wildl Manage 82:507–518

    Article  Google Scholar 

  26. Drouilly M, Tafani M, Nattrass N, O’Riain J (2018c) Spatial, temporal and attitudinal dimensions of conflict between predators and small-livestock farmers in the Central Karoo. Afr J Range Forage Sci 35:245–255

    Article  Google Scholar 

  27. Du Plessis JJ, Avenant NL, Botha A et al (2018) Past and current management of predation on livestock. In: Kerley GIH, Wilson SL, Balfour D (eds) Livestock predation and its management in South Africa: a scientific assessment. Nelson Mandela University, Centre for African Conservation Ecology, Port Elizabeth, pp 125–177

    Google Scholar 

  28. Du Toit JT, Cumming DHM (1999) Functional significance of ungulate diversity in African savannas and the ecological implications of the spread of pastoralism. Biodivers Conserv 8:1643–1661. https://doi.org/10.1023/A:1008959721342

    Article  Google Scholar 

  29. Edwards S, Gange AC, Wiesel I (2015) Spatiotemporal resource partitioning of water sources by African carnivores on Namibian commercial farmlands. J Zool 297:22–31. https://doi.org/10.1111/jzo.12248

    Article  Google Scholar 

  30. Estes R (1991) The behavior guide to African mammals: including hoofed mammals, carnivores, primates. University of California Press, Berkeley

    Google Scholar 

  31. Fisher JT, Burton AC (2018) Wildlife winners and losers in an oil sands landscape. Front Ecol Environ 16:323–328

    Article  Google Scholar 

  32. Fox JW (2013) The intermediate disturbance hypothesis should be abandoned. Trends Ecol Evol 28:86–92. https://doi.org/10.1016/j.tree.2012.08.014

    Article  PubMed  Google Scholar 

  33. Gordon IJ, Hester AJ, Festa-Bianchet M (2004) The management of wild large herbivores to meet economic, conservation and environmental objectives. J Appl Ecol 41:1021–1031. https://doi.org/10.1111/j.0021-8901.2004.00985.x

    Article  Google Scholar 

  34. Gotelli N, Colwell R (2011) Estimating species richness. Biol Divers Front Meas Assess 12:39–54

    Google Scholar 

  35. Gusset M, Swarner MJ, Mponwane L et al (2009) Human-wildlife conflict in northern Botswana: livestock predation by endangered African wild dog lycaon pictus and other carnivores. Oryx 43:67–72. https://doi.org/10.1017/S0030605308990475

    Article  Google Scholar 

  36. Hey D (1964) The control of vertebrate problem animals in the Cape of Good Hope Republic of South Africa. Paper 30. In: Proceedings of the 3rd Vertebrate Pest Conference

  37. Hilty JA, Brooks C, Heaton E, Merenlender AM (2006) Forecasting the effect of land-use change on native and non-native mammalian predator distributions. Biodivers Conserv 15:2853–2871. https://doi.org/10.1007/s10531-005-1534-5

    Article  Google Scholar 

  38. Hoffman MT, Cousins B, Meyer T et al (1999) Historical and contemporary land use and the desertification of the Karoo. In: Dean DJ, Milton SJ (eds) The Karoo: ecological patterns and processes. Cambridge University Press, UK, pp 257–273

    Google Scholar 

  39. Hooper DU, Chapin FS, Ewel JJ et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35. https://doi.org/10.1890/04-0922

    Article  Google Scholar 

  40. Huston M (1979) A general hypothesis of species diversity. Am Nat 113:81–101. https://doi.org/10.1086/283366

    Article  Google Scholar 

  41. Jaccard P (1912) The distribution of the flore of the alpine zone. New Phytol 11:37–50. https://doi.org/10.1111/j.1469-8137.1912.tb05611.x

    Article  Google Scholar 

  42. Jenks K, Chanteap P, Damrongchainarong K et al (2011) Using relative abundance indices from camera- trapping to test wildlife conservation hypotheses-an example from Khao Yai National Using relative abundance indices from camera—trapping to test wildlife conservation hypotheses ± an example from Khao Yai. Trop Conserv Sci 4:113–131

    Article  Google Scholar 

  43. Jost L (2006) Entropy and diversity. Oikos 113:363–375. https://doi.org/10.1111/j.2006.0030-1299.14714.x

    Article  Google Scholar 

  44. Kamler JF, Stenkewitz U, Macdonald DW (2013) Lethal and sublethal effects of black-backed jackals on cape foxes and bat-eared foxes. J Mamm 94:295–306. https://doi.org/10.1644/12-MAMM-A-122.1

    Article  Google Scholar 

  45. Kauffman MJ, Sanjayan M, Lowenstein J et al (2007) Remote camera-trap methods and analyses reveal impacts of rangeland management on Namibian carnivore communities. Oryx 41:70–78. https://doi.org/10.1017/S0030605306001414

    Article  Google Scholar 

  46. Kerley GIH, Wilson SL, Balfour D (2018) Livestock predation and its management in South Africa: a scientific assessment. Nelson Mandela University, Centre for African Conservation Ecology, Port Elizabeth

    Google Scholar 

  47. Kiffner C, Wenner C, Laviolet A et al (2015) From savannah to farmland: effects of land-use on mammal communities in the Tarangire-Manyara ecosystem, Tanzania. Afr J Ecol 53:156–166. https://doi.org/10.1111/aje.12160

    Article  Google Scholar 

  48. Kinnaird MF, O’Brien TG (2012) Effects of private-land use, livestock management, and human tolerance on diversity, distribution, and abundance of large African mammals. Conserv Biol 26:1026–1039. https://doi.org/10.1111/j.1523-1739.2012.01942.x

    Article  PubMed  Google Scholar 

  49. KPMG Services (Pty) Ltd (2012) Small enterprise development agency: research on the performance of the agricultural sector. KPMG Services (Pty) Ltd, Park Town

    Google Scholar 

  50. Laliberte E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305. https://doi.org/10.2307/25661046

    Article  PubMed  Google Scholar 

  51. Laliberte E, Legendre P, Bill Shipley (2015) Measuring functional diversity (FD) from multiple traits, and other tools for functional ecology, pp 1–28

  52. Larrucea ES, Brussard PF, Jaeger MM, Barrett RH (2007) Cameras, coyotes, and the assumption of equal detectability. J Wildl Manage 71:1682–1689. https://doi.org/10.2193/2006-407

    Article  Google Scholar 

  53. Larsen TH, Williams NM, Kremen C (2005) Extinction order and altered community structure rapidly disrupt ecosystem functioning. Ecol Lett 8:538–547. https://doi.org/10.1111/j.1461-0248.2005.00749.x

    Article  Google Scholar 

  54. Lindstedt SL, Miller BJ, Buskirk SW (1986) Home range, time, and body size in mammals. Ecology 67:413–418. https://doi.org/10.2307/1938584

    Article  Google Scholar 

  55. Maciejewski K, Baum J, Cumming GS (2016) Integration of private land conservation areas in a network of statutory protected areas: implications for sustainability. Biol Conserv 200:200–206. https://doi.org/10.1016/j.biocon.2016.05.027

    Article  Google Scholar 

  56. Maitima JM, Mugatha SM, Reid RS et al (2009) The linkages between land use change, land degradation and biodiversity across East Africa. African J Environ Sci Technol 3:310–325. https://doi.org/10.5897/AJEST08.173

    Article  Google Scholar 

  57. Mann G, Lagesse J, O’Riain M, Parker D (2015a) Beefing up species richness? The effect of land-use on mammal diversity in an arid biodiversity hotspot. Afr J Wildl Res 45:321–331. https://doi.org/10.3957/056.045.0321

    Article  Google Scholar 

  58. Mann GKH, O’Riain MJ, Parker DM (2015b) The road less travelled: assessing variation in mammal detection probabilities with camera traps in a semi-arid biodiversity hotspot. Biodivers Conserv 24:531–545. https://doi.org/10.1007/s10531-014-0834-z

    Article  Google Scholar 

  59. McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–453. https://doi.org/10.1016/S0169-5347(99)01679-1

    Article  CAS  Google Scholar 

  60. Meek PD, Ballard G, Claridge A et al (2014) Recommended guiding principles for reporting on camera trapping research. Biodivers Conserv 23:2321–2343. https://doi.org/10.1007/s10531-014-0712-8

    Article  Google Scholar 

  61. Msuha MJ, Carbone C, Pettorelli N, Durant SM (2012) Conserving biodiversity in a changing world: land use change and species richness in northern Tanzania. Biodivers Conserv 21:2747–2759. https://doi.org/10.1007/s10531-012-0331-1

    Article  Google Scholar 

  62. Myers N, Kent J (2003) New consumers: the influence of affluence on the environment. Proc Natl Acad Sci U S A 100:4963–4968. https://doi.org/10.1073/pnas.0438061100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nattrass N, Conradie B (2015) Jackal Narratives: Predator Control and Contested Ecologies in the Karoo. South Africa. J South Afr Stud 41(4):753–771

    Article  Google Scholar 

  64. O’Brien TG, Baillie JEM, Krueger L, Cuke M (2010) The wildlife picture index: monitoring top trophic levels. Anim Conserv 13:335–343. https://doi.org/10.1111/j.1469-1795.2010.00357.x

    Article  Google Scholar 

  65. Odling-Smee L (2005) Dollars and sense. Nature 437:614–616. https://doi.org/10.1038/437614a

    Article  CAS  PubMed  Google Scholar 

  66. Ogada DL (2014) The power of poison: pesticide poisoning of Africa’s wildlife. Ann N Y Acad Sci 1322:1–20. https://doi.org/10.1111/nyas.12405

    Article  CAS  PubMed  Google Scholar 

  67. Ogutu JO, Bhola N, Reid R (2005) The effects of pastoralism and protection on the density and distribution of carnivores and their prey in the Mara ecosystem of Kenya. J Zool 265:281–293. https://doi.org/10.1017/S0952836904006302

    Article  Google Scholar 

  68. Ogutu JO, Kuloba B, Piepho H-P, Kanga E (2017) Wildlife population dynamics in human-dominated landscapes under community-based conservation: the example of Nakuru Wildlife Conservancy, Kenya. PLoS One 12:e0169730. https://doi.org/10.1371/journal.pone.0169730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Oksanen J, Blanchet FG, Friendly M, et al (2017) vegan: Community Ecology Package. R Packag. version 2.4-4 https://CRAN.R-project.org/package=vegan

  70. Owen-Smith N, Cromsigt JPGM, Le Roux E (2017) Smaller ungulates are first to incur imminent extirpation from an African protected area. Biol Conserv 216:108–114. https://doi.org/10.1016/j.biocon.2017.10.013

    Article  Google Scholar 

  71. Palmer AR, Hoffman MT (1997) Nama Karoo. In: Cowling RM, Richardson DM, Pierce SM (eds) Vegetation of Southern Africa. Cambridge University Press, Cambridge, pp 167–186

    Google Scholar 

  72. Pauly D (1995) Anecdotes and the shifting baseline syndrome of fisheries. Trends Ecol Evol 10:430. https://doi.org/10.1016/S0169-5347(00)89171-5

    Article  CAS  Google Scholar 

  73. R Development Core Team (2016) R: a language and environment for statistical computing

  74. Rannestad OT, Danielsen T, Moe SR et al (2006) Adjacent pastoral areas support higher densities of wild ungulates during the wet season than the Lake Mburo National Park in Uganda. J Trop Ecol 22:675–683. https://doi.org/10.1017/s0266467406003610

    Article  Google Scholar 

  75. Rich LN, Miller DAW, Robinson HS et al (2016) Using camera trapping and hierarchical occupancy modelling to evaluate the spatial ecology of an African mammal community. J Appl Ecol 53:1225–1235. https://doi.org/10.1111/1365-2664.12650

    Article  Google Scholar 

  76. Ripple WJ, Estes JA, Beschta RL et al (2014) Status and ecological effects of the world’s largest carnivores. Science 343:1241484. https://doi.org/10.1126/science.1241484

    Article  CAS  PubMed  Google Scholar 

  77. Ripple WJ, Newsome TM, Wolf C et al (2015) Collapse of the world’s largest herbivores. Sci Adv 1:e1400103. https://doi.org/10.1126/sciadv.1400103

    Article  PubMed  PubMed Central  Google Scholar 

  78. Rouget M, Richardson DM, Cowling RM (2003) The current configuration of protected areas in the Cape Floristic Region, South Africa—reservation bias and representation of biodiversity patterns and processes. Biol Conserv 112:129–145. https://doi.org/10.1016/S0006-3207(02)00396-8

    Article  Google Scholar 

  79. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423. https://doi.org/10.1145/584091.584093

    Article  Google Scholar 

  80. Shaw JM, Reid TA, Schutgens M et al (2017) High power line collision mortality of threatened bustards at a regional scale in the Karoo, South Africa. Ibis. https://doi.org/10.1111/ibi.12553

    Article  Google Scholar 

  81. Skead CJ (1987) Historical mammal incidence in the Cape Province: Vol. 2—The eastern half of the Cape Province, including the Ciskei, Transkei and East Griqualand. Nat Environ Conserv Cape Town, pp 267–311

  82. Skinner JD, Chimimba CT (2005) The mammals of the Southern African subregion. Cambridge University Press, Cambridge

    Google Scholar 

  83. Sollmann R, Mohamed A, Samejima H, Wilting A (2013) Risky business or simple solution—relative abundance indices from camera-trapping. Biol Conserv 159:405–412. https://doi.org/10.1016/j.biocon.2012.12.025

    Article  Google Scholar 

  84. Statistics SA (2006) Census of Agriculture Provincial Statistics 2002- Limpopo: financial and production statistics

  85. Stephens PA, d’Sa CA, Sillero-Zubiri C, Leader-Williams N (2001) Impact of livestock and settlement on the large mammalian wildlife of Bale Mountains National Park, southern Ethiopia. Biol Conserv 100:307–322. https://doi.org/10.1016/S0006-3207(01)00035-0

    Article  Google Scholar 

  86. Tensen L, Drouilly M, van Vuuren BJ (2018) Genetic structure and diversity within lethally managed populations of two mesopredators in South Africa. J Mammal 99(6):1411–1421

    Google Scholar 

  87. Terborgh J, Estes J (2010) Trophic cascades: predators, prey, and the changing dynamics of nature. Island Press, Washington, DC

    Google Scholar 

  88. Thorn M, Green M, Dalerum F et al (2012) What drives human-carnivore conflict in the North West Province of South Africa? Biol Conserv 150:23–32. https://doi.org/10.1016/j.biocon.2012.02.017

    Article  Google Scholar 

  89. Tobler MW, Carrillo-Percastegui SE, Leite Pitman R et al (2008) An evaluation of camera traps for inventorying large- and medium-sized terrestrial rainforest mammals. Anim Conserv 11:169–178. https://doi.org/10.1111/j.1469-1795.2008.00169.x

    Article  Google Scholar 

  90. Todd SW (2006) Gradients in vegetation cover, structure and species richness of Nama-Karoo shrublands in relation to distance from livestock watering points. J Appl Ecol 43:293–304. https://doi.org/10.1111/j.1365-2664.2006.01154.x

    Article  Google Scholar 

  91. Treves A, Karanth KU (2003) Human-carnivore conflict and perspectives on carnivore management worldwide. Conserv Biol 17:1491–1499. https://doi.org/10.1111/j.1523-1739.2003.00059.x

    Article  Google Scholar 

  92. van Sittert L (1998) Keeping the enemy at bay: the extermination of wild carnivora in the Cape Colony, 1889–1910. Environ Hist Durh N C 3:333–356. https://doi.org/10.2307/3985183

    Article  Google Scholar 

  93. van Sittert L (2016) Routinising genocide: the politics and practice of vermin extermination in the Cape Province c.1889–1994. J Contemp African Stud 34:111–128

    Article  Google Scholar 

  94. Western D, Russell S, Cuthill I (2009) The status of wildlife in protected areas compared to non-protected areas of Kenya. PLoS ONE 4:e6140. https://doi.org/10.1371/journal.pone.0006140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Williams RE, Allred BW, Denio RM, Paulsen HA (1968) Conservation, development, and use of the world’s rangelands. J Range Manag 21:355. https://doi.org/10.2307/3896081

    Article  Google Scholar 

  96. Wilson JB (1991) Methods for fitting dominance/diversity curves. J Veg Sci 2:35–46. https://doi.org/10.2307/3235896

    Article  Google Scholar 

  97. Woodgate Z, Distiller G, O’Riain J (2018) Variation in mammal species richness and relative abundance in the Karoo. Afr J Range Forage Sci 35:325–334

    Article  Google Scholar 

  98. Wretenberg J, Pärt T, Berg Å (2010) Changes in local species richness of farmland birds in relation to land-use changes and landscape structure. Biol Conserv 143:375–381. https://doi.org/10.1016/j.biocon.2009.11.001

    Article  Google Scholar 

  99. WWF-South Africa (2017) Stewardship agreements secure natural bounty | WWF South Africa. http://www.wwf.org.za/?22581/Stewardship-agreements-secure-natural-bounty-of-the-Succulent-Karoo. Accessed 22 Nov 2017

  100. Zavaleta ES, Hulvey KB (2004) Realistic species losses disproportionately reduce grassland resistance to biological invaders. Science 306:1175–1177. https://doi.org/10.1126/science.1102643

    Article  CAS  PubMed  Google Scholar 

  101. Zimmermann A, Baker N, Inskip C et al (2010) Contemporary views of human-carnivore conflicts on wild rangelands. In: du Toit JT, Kock R, Deutsch JC (eds) Wild rangelands: conserving wildlife while maintaining livestock in semi-arid ecosystems, 1st edn. Blackwell Publishing, Hoboken, pp 129–151

    Google Scholar 

Download references

Acknowledgements

We thank the Karoo farmers and CapeNature for their participation and for allowing us access to their farms and to Anysberg Nature Reserve to set camera traps. We are also grateful to B. Conradie for introducing us to the farmer community, and to the South African Weather Service for providing the weather data for the town of Laingsburg. We thank the two anonymous reviewers who provided comments that greatly improved our manuscript. This work was supported by the WWF Nedbank Green Trust (grant number GT 2251), an NRF grant to M. J. O’Riain and a URC equipment grant from UCT to N. Nattrass and M. J. O’Riain.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marine Drouilly.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by David Hawksworth.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 75 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Drouilly, M., O’Riain, M.J. Wildlife winners and losers of extensive small-livestock farming: a case study in the South African Karoo. Biodivers Conserv 28, 1493–1511 (2019). https://doi.org/10.1007/s10531-019-01738-3

Download citation

Keywords

  • Camera traps
  • Diversity
  • Karoo
  • Predators
  • Species richness
  • Terrestrial vertebrate communities