Skip to main content

Advertisement

Log in

Drivers of floristic richness in the Mediterranean: a case study from Tuscany

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Unravelling patterns of species richness is a fundamental prerequisite to understand evolutionary and ecological dynamics, aiding to set efficient conservation activities. The Species-Area Relationship (SAR) is one of the most general patterns in ecology. Focusing on a Mediterranean area as case study, we investigated SAR and the drivers underlying species richness. We gathered data from all vascular floras published for circumscribed areas in Tuscany after 1970 and then we fitted SAR models based on Arrhenius’ power function for the whole established flora, and for native and alien species separately. SAR residuals, which express the actual species richness free of area-effect, were modelled through spatially explicit Generalised Linear Models using geographic, climatic, and anthropogenic explanatory variables. The most relevant predictor for species richness is the grain of the study area, while environmental drivers play a minor role. Topographic heterogeneity and the amount of precipitation show a positive effect on total floristic richness, while the spatial heterogeneity of annual temperature range shows a negative effect. Native and alien species richness are positively correlated, but different combinations of drivers are involved to explain the patterns of the two different species pools. A fundamental factor driving species richness is the insularity: islands host, proportionally, fewer native species and more alien species than mainland areas. Alien species richness is positively affected by landscape heterogeneity. Finally, we present for the first time a method to draft maps of SAR-predicted floristic richness, integrated by the influence of environmental drivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Article  Google Scholar 

  • Alston KP, Richardson DM (2006) The roles of habitat features, disturbance, and distance from putative source populations in structuring alien plant invasions at the urban/wildland interface on the Cape Peninsula, South Africa. Biol Cons 132:183–198

    Article  Google Scholar 

  • Arrhenius O (1921) Species and area. J Ecol 9:95–99

    Article  Google Scholar 

  • Attorre F, De Sanctis M, Farcomeni A, Guillet A, Scepi E, Vitale M, Pella F, Fasola M (2013) The use of spatial ecological modelling as a tool for improving the assessment of 395 geographic range size of threatened species. J Nat Cons 21:48–55

    Article  Google Scholar 

  • Baiser B, Li D (2018) Comparing species-area relationships of native and exotic species. Biol Inv 20:3647–3658

    Article  Google Scholar 

  • Báldi A (2008) Habitat heterogeneity overrides the species-area relationship. J Biogeogr 35:675–681. https://doi.org/10.1111/j.1365-2699.2007.01825.x

    Article  Google Scholar 

  • Bartolucci F, Peruzzi L, Galasso G, Albano A, Alessandrini A, Ardenghi NMG, Astuti G, Bacchetta G, Ballelli S, Banfi E, Barberis G, Bernardo L, Bouvet D, Bovio M, Cecchi L, Di Pietro R, Domina G, Fascetti S, Fenu G, Festi F, Foggi B, Gallo L, Gubellini L, Gottschlich G, Iamonico D, Iberite M, Jinénez-Mejías P, Lattanzi E, Martinetto E, Masin RR, Medagli P, Passalacqua NG, Peccenini S, Pennesi R, Pierini B, Poldini L, Prosser F, Raimondo FM, Marchetti D, Roma-Marzio F, Rosati L, Santangelo A, Scoppola A, Scortegagna S, Selvaggi A, Selvi F, Soldano A, Stinca A, Wagensommer RP, Wilhalm T, Conti F (2018) An updated checklist of the vascular flora native to Italy. Plant Biosyst 152:179–303. https://doi.org/10.1080/11263504.2017.1419996

    Article  Google Scholar 

  • Bedini G, Pierini B, Roma-Marzio F, Caparelli KF, Bonari G, Dolci D, Gestri G, D’Antraccoli M, Peruzzi L (2016) Wikiplantbase #Toscana, breaking the dormancy of floristic data. Plant Biosyst 150:601–610

    Article  Google Scholar 

  • Bivand RS, Hauke J, Kossowski T (2013) Computing the Jacobian in Gaussian spatial autoregressive models: an illustrated comparison of available methods. Geogr Anal 45(2):150–179

    Article  Google Scholar 

  • Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, Wilson JRU, Richardson DM (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339

    Article  PubMed  Google Scholar 

  • Brown JH (1988) Species diversity. In: Myers AA, Giller PS (eds) Analytical biogeography. Chapman and Hall, An integrated approach to the study of animal and plant distributions, pp 57–89

    Chapter  Google Scholar 

  • Calcagno V (2013) glmulti: Model selection and multimodel inference made easy. R package version 1.0.7. https://CRAN.R-project.org/package=glmulti

  • Cam EJ, Nichols D, Hines JE, Sauer JR, Alpizar-Jara R, Flather CH (2002) Disentangling sampling and ecological explanations underlying species-area relationships. Ecology 83:1118–1130

    Google Scholar 

  • Carta A, Pierini B, Roma-Marzio F, Bedini G, Peruzzi L (2017) Phylogenetic measures of biodiversity uncover pteridophyte centres of diversity and hotspots in Tuscany. Plant Biosyst 152:831–839

    Article  Google Scholar 

  • Celesti-Grapow L, Bassi L, Brundu G, Camarda I, Carli E, D’Auria G, Del Guacchio E, Domina G, Ferretti G, Foggi B, Lazzaro L, Mazzola P, Peccenini S, Pretto F, Stinca A, Blasi C (2016) Plant invasions on small Mediterranean islands: an overview. Plant Biosyst 150:1119–1133

    Article  Google Scholar 

  • Chiarucci A, Bonini I (2005) Quantitative floristics as a tool for the assessment of plant diversity in Tuscan forests. For Ecol Manag 212:160–170

    Article  Google Scholar 

  • Chiarucci A, Bacaro G, Rocchini D (2008) Quantifying plant species diversity in a Natura 2000 network: old ideas and new proposals. Biol Cons 141:2608–2618

    Article  Google Scholar 

  • Chiarucci A, Bacaro G, Scheiner SM (2011a) Old and new challenges in using species diversity for assessing biodiversity. Phil Trans R Soc B 366:2426–2437. https://doi.org/10.1098/rstb.2011.0065

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiarucci A, Bacaro G, Triantis KA, Fernández-Palacios JM (2011b) Biogeographical determinants of pteridophytes and spermatophytes on oceanic archipelagos. Syst Biodiv 9:191–201

    Article  Google Scholar 

  • Chiarucci A, Bacaro G, Filibeck G, Landi S, Maccherini S, Scoppola A (2012) Scale dependence of plant species richness in a network of protected areas. Biodiv Cons 21:503–516

    Article  Google Scholar 

  • Chiarucci A, Fattorini S, Foggi B, Landi S, Lazzaro L, Podani J, Simberloff D (2017) Plant recording across two centuries reveals dramatic changes in species diversity of a Mediterranean archipelago. Sci Rep 7:5415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colwell R, Coddington J (1994) Estimating terrestrial biodiversity through extrapolation. Phil Trans R Soc Lond B 345:101–118. https://doi.org/10.1098/rstb.1994.0091

    Article  CAS  Google Scholar 

  • Connor E, McCoy ED (1979) The statistics and biology of the species-area relationship. Am Nat 113:791–833

    Article  Google Scholar 

  • Cowling RM, Rundel PW, Lamont BB, Arroyo MK, Arianoutsou M (1996) Plant diversity in mediterranean-climate regions. Trends Ecol Evol 11:362–366

    Article  CAS  PubMed  Google Scholar 

  • Currie DJ (1991) Energy and large-scale patterns of animal-and plant-species richness. Am Nat 137:27–49

    Article  Google Scholar 

  • Dengler J (2009) Which function describes the species–area relationship best? A review and empirical evaluation. J Biogeogr 36:728–744

    Article  Google Scholar 

  • Deutschewitz K, Lausch A, Kühn I, Klotz S (2003) Native and alien plant species richness in relation to spatial heterogeneity on a regional scale in Germany. Global Ecol Biogeogr 12:299–311

    Article  Google Scholar 

  • Diniz-Filho JAF, Bini LM (2005) Modelling geographical patterns in species richness using eigenvector-based spatial filters. Global Ecol Biogeogr 14:177–185

    Article  Google Scholar 

  • Diniz-Filho JAF, Bini LM, Hawkins BA (2003) Spatial autocorrelation and red herrings in geographical ecology. Glob Ecol Biogeogr 12:53–64

    Article  Google Scholar 

  • Drakare S, Lennon JJ, Hillebrand H (2006) The imprint of the geographical, evolutionary and ecological context on species–area relationships. Ecol Lett 9:215–227

    Article  PubMed  Google Scholar 

  • Duivenvoorden JF (1994) Vascular plant species counts in the rain forests of the middle Caquetá area, Colombian Amazonia. Biodiv Cons 3:685–715

    Article  Google Scholar 

  • Early R, Bradley BA, Dukes JS, Lawler JJ, Olden JD, Blumenthal DM, Gonzalez P, Grosholz ED, Ibañez I, Miller LP, Sorte CJB, Tatem AJ (2016) Global threats from invasive alien species in the twenty-first century and national response capacities Nature Commun 7:12485

    CAS  Google Scholar 

  • Ellison A (2010) Partitioning diversity. Ecology 91:1962–1963. https://doi.org/10.1890/09-1692.1

    Article  PubMed  Google Scholar 

  • Elton CS (1958) The ecology of invasions by animals and plants. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Fattorini S (2006) Detecting biodiversity hotspots by Species-Area Relationships: a case study of Mediterranean beetles. Cons Biol 20:1169–1180

    Article  Google Scholar 

  • Fattorini S, Borges PA, Dapporto L, Strona G (2017) What can the parameters of the species-area relationship (SAR) tell us? Insights from Mediterranean islands. J Biogeogr 44:1018–1028

    Article  Google Scholar 

  • Feld CK, Martins da Silva P, Paulo Sousa J, De Bello F, Bugter R, Grandin U, Hering D, Lavorel S, Mountford O, Pardo I, Pärtel M, Römbke J, Sandin L, Bruce Jones K, Harrison P (2009) Indicators of biodiversity and ecosystem services: a synthesis across ecosystems and spatial scales. Oikos 118:1862–1871. https://doi.org/10.1111/j.1600-0706.2009.17860.x

    Article  Google Scholar 

  • Ferriér S, Guisan A (2006) Spatial modelling of biodiversity at the community level. J Appl Ecol 43:393–404

    Article  Google Scholar 

  • Fick SE, Hijmans RJ (2017) Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int J Clim https://doi.org/10.1002/joc.5086

  • Foxcroft LC, Jarošík V, Pyšek P, Richardson DM, Rouget M (2011) Protected area boundaries as filters of plant invasions. Cons Biol 25:400–405

    Google Scholar 

  • Francis AP, Currie DJ (2003) A globally consistent richness climate relationship for Angiosperms. Am Nat 161:523–536

    Article  PubMed  Google Scholar 

  • Fraser RH, Currie DJ (1996) The species richness-energy hypothesis in a system where historical factors are thought to prevail. Am Nat 148:138–159. https://doi.org/10.1086/285915

    Article  Google Scholar 

  • Galasso G, Conti F, Peruzzi L, Ardenghi NMG, Banfi E, Celesti-Grapow L, Albano A, Alessandrini A, Bacchetta G, Ballelli S, Bandini Mazzanti M, Barberis G, Bernardo L, Blasi C, Bouvet D, Bovio M, Cecchi L, Del Guacchio E, Di Pietro R, Domina G, Fascetti S, Gallo L, Gubellini L, Guiggi A, Iamonico D, Iberite M, Jiménez-Mejías P, Lattanzi E, Marchetti D, Martinetto E, Masin RR, Medagli P, Passalacqua NG, Peccenini S, Pennesi R, Pierini B, Podda L, Poldini L, Prosser F, Raimondo FM, Roma-Marzio F, Rosati L, Santangelo A, Scoppola A, Scortegagna S, Selvaggi A, Selvi F, Soldano A, Stinca A, Wagensommer RP, Wilhalm T, Bartolucci F (2018) An updated checklist of the vascular flora alien to Italy. Plant Biosyst 152:556–592. https://doi.org/10.1080/11263504.2018.1441197

    Article  Google Scholar 

  • Gao J, Liu Y (2018) Climate stability is more important than water-energy variables in shaping the elevational variation in species richness. Ecol Evol 8:6872–6879. https://doi.org/10.1002/ece3.4202

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaston KJ (2000) Global patterns in biodiversity. Nature 405:220–227

    Article  CAS  PubMed  Google Scholar 

  • Gazol A, Tamme R, Price JN, Hiiesalu I, Laanisto L, Partel M (2013) A negative heterogeneity–diversity relationship found in experimental grassland communities. Oecologia 173:545–555

    Article  PubMed  Google Scholar 

  • GBIF: The Global Biodiversity Information Facility (2019) What is GBIF?. https://www.gbif.org/what-is-gbif. Accessed 3 Jan 2019

  • Gillespie R, Roderick G (2014) Evolution: geology and climate drive diversification. Nature 509:297–298

    Article  CAS  PubMed  Google Scholar 

  • Gray JS, Ugland KI, Lambshead J (2004) On species accumulation and species-area curves. Glob Ecol Biogeogr 13:567–568

    Article  Google Scholar 

  • Greuter W (1991) Botanical diversity, endemism, rarity and extinction in the Mediterranean area: an analysis based on the published volume of Med-Checklist. Bot Chron 108:63–79

    Google Scholar 

  • Guisan A, Tingley R, Baumgartner JB, Naujokaitis-Lewis I, Sutcliffe PR, Tulloch AIT, Regan TJ, Brotons L, McDonald-Madden E, Mantyka-Pringle C, Martin TG, Rhodes JR, Maggini R, Setterfield SA, Elith J, Schwartz MW, Wintle BA, Broennimann O, Austin M, Ferrier S, Kearney MR, Possingham HP, Buckley YM (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435

    Article  PubMed  PubMed Central  Google Scholar 

  • Harte J, Kinzig A, Green J (1999) Self-similarity in the distribution and abundance of species. Science 294:334–336

    Article  Google Scholar 

  • Hawkins BA, Field R, Cornell HV, Currie DJ, Guegan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM, Porter EE, Turner JRG (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology 84:3105–3117. https://doi.org/10.1890/03-8006

    Article  Google Scholar 

  • He F, Legendre P (2002) Species diversity patterns derived from species–area models. Ecology 83:1185–1198. https://doi.org/10.2307/3071933

    Article  Google Scholar 

  • Hijmans RJ (2017) raster: Geographic Data Analysis and Modeling. R package version 2.6-7

  • Hill MO (2012) Local frequency as a key to interpreting species occurrence data when recording effort is not known. Methods Ecol Evol 3:195–205

    Article  Google Scholar 

  • Hortal J, Borges PAV, Gaspar C (2006) Evaluating the performance of species richness estimators: sensitivity to sample grain size. J Anim Ecol 75:274–287

    Article  PubMed  Google Scholar 

  • Hortal J, Triantis KA, Meiri S, Thébault E, Sfenthourakis S (2009) Island species richness increases with habitat diversity. Am Nat 174:E205–E217

    Article  PubMed  Google Scholar 

  • Hulme PE (2008) Contrasting alien and native plant species–area relationships: the importance of spatial grain and extent. Global Ecol Biogeogr 17:641–647

    Article  Google Scholar 

  • Knapp S (2008) Species concepts and floras: what are species for? Biol J Linn Soc 95:17–25

    Article  Google Scholar 

  • Kreft H, Jetz W (2007) Global patterns and determinants of vascular plant diversity. PNAS USA 104:5925–5930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laanisto L, Tamme R, Hiiesalu I, Szava-Kovats R, Gazol A, Pärtel M (2013) Microfragmentation concept explains non-positive environmental heterogeneity–diversity relationships. Oecologia 171:217–226

    Article  PubMed  Google Scholar 

  • Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673

    Article  Google Scholar 

  • Leroy B, Meynard CN, Bellard C, Courchamp F (2016) virtualspecies, an R package to generate virtual species distributions. Ecography 39:599–607

    Article  Google Scholar 

  • Liu Q, Buyantuev A, Wu J, Niu J, Yu D, Zhang Q (2018) Intensive land-use drives regional-scale homogenization of plant communities. Sci Tot Env 644:806–814

    Article  CAS  Google Scholar 

  • Lomolino MV (2000) Ecology’s most general, yet protean pattern: the species–area relationship. J Biogeogr 27:17–26

    Article  Google Scholar 

  • Lomolino MV (2001) The species-area relationship: new challenges for an old pattern. Prog Phys Geogr 25:1–21. https://doi.org/10.1177/030913330102500101

    Article  Google Scholar 

  • Long JD, Trussell GC, Elliman T (2009) Linking invasions and biogeography: isolation differentially affects exotic and native plant diversity. Ecology 90:863–868

    Article  PubMed  Google Scholar 

  • Lonsdale WM (1999) Global patterns of plant invasions and the concept of invasibility. Ecology 80:1522–1536

    Article  Google Scholar 

  • MacArthur RH, MacArthur J (1961) On bird species diversity. Ecology 42:594–598

    Article  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of Island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Mair L, Ruete A (2016) Explaining spatial variation in the recording effort of citizen science data across multiple taxa. PLoS ONE 11:e0147796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malavasi M, Santoro R, Cutini M, Acosta ATR, Carranza ML (2016) The impact of human pressure on landscape patterns and plant species richness in Mediterranean coastal dunes. Plant Biosyst 150:73–82

    Article  Google Scholar 

  • Mallet J (1995) A species definition for the modern synthesis. Trends Ecol Evol 10:294–299

    Article  CAS  PubMed  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman & Hall, London

    Book  Google Scholar 

  • Médail F, Quézel P (1997) Hot-spots analysis for conservation of plant biodiversity in the Mediterranean Basin. Ann Missouri Bot Gard 84:112–127

    Article  Google Scholar 

  • Mittermeier RA, Robles GP, Hoffmann M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux J, daFonseca GAB (2004) Hotspots revisited: Earth’s biologically richest and most endangered ecoregions. CEMEX, Mexico City

    Google Scholar 

  • Molina-Venegas R, Aparicio A, Pina FJ, Valdés B, Arroyo J (2013) Disentangling environmental correlates of vascular plant biodiversity in a Mediterranean hotspot. Ecol Evol 3:3879–3894

    Article  PubMed  PubMed Central  Google Scholar 

  • Moser D, Dullinger S, Englisch T, Niklfeld H, Plutzar C, Sauberer N, Zechmeister HG, Grabherr G (2005) Environmental determinants of vascular plant species richness in the Austrian Alps. J Biogeogr 32:1117–1127

    Article  Google Scholar 

  • Mourelle C, Ezcurra E (1996) Species richness patterns of Argentine cacti: a test of some biogeographic hypotheses. J Veg Sci 7:667–680

    Article  Google Scholar 

  • Muratet A, Lorrilliere R, Clergeau P, Fontaine C (2013) Evaluation of landscape connectivity at community level using satellite-derived NDVI. Landsc Ecol 28:95–105

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Nikolić T, Antonić O, Alegro AL, Dobrović I, Bogdanović S, Liber Z, Rešetnik I (2008) Plant species diversity of Adriatic islands: an introductory survey. Plant Biosyst 142:435–445

    Article  Google Scholar 

  • Oksanen J, Guillaume Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2017) vegan: Community Ecology Package. R package version 2.4-5. https://CRAN.R-project.org/package=vegan

  • Palmer MW, Wade GL, Neal P (1995) Standards for the writing of floras. Bioscience 45:339–345

    Article  Google Scholar 

  • Palmer MW, McGlinn DJ, Fridley JD (2008) Artifacts and artifictions in biodiversity research. Folia Geobot 43:245–257. https://doi.org/10.1007/s12224-008-9012-y

    Article  Google Scholar 

  • Peruzzi L, Bedini G (eds) (2015) Wikiplantbase #Toscana v2.1 http://bot.biologia.unipi.it/wpb/toscana/index.html

  • Peruzzi L, Bagella S, Filigheddu S, Pierini B, Sini M, Roma-Marzio F, Caparelli KF, Bonari G, Gestri G, Dolci D, Consagra A, Sassu P, Caria MC, Rivieccio G, Marrosu M, D’Antraccoli M, Pacifico G, Piu V, Bedini G (2017) The Wikiplantbase project: the role of amateur botanists in building up large online floristic databases. Flora Medit 27:117–129

    Google Scholar 

  • Pianka ER (1966) Latitudinal gradients in species diversity: a review of concepts. Am Nat 100:33–46

    Article  Google Scholar 

  • Powell KI, Chase JM, Knight TM (2013) Invasive plants have scale-dependent effects on diversity by altering species-area relationships. Science 339:316–318

    Article  CAS  PubMed  Google Scholar 

  • Preston FW (1962) The canonical distribution of commonness and rarity: part I. Ecology 43:185–215

    Article  Google Scholar 

  • Pretto F, Celesti-Grapow L, Carli E, Brundu G, Blasi C (2012) Determinants of non-native plant species richness and composition across small Mediterranean islands. Biol Inv 14:2559–2572

    Article  Google Scholar 

  • Price JP (2004) Floristic biogeography of the Hawaiian Islands: influences of area, environment and paleogeography. J Biogeogr 31:487–500

    Article  Google Scholar 

  • Pyšek P, Richardson DM, Rejmánek M, Webster GL, Williamson M, Kirschner J (2004) Alien plants in checklists and floras: towards better communication between taxonomists and ecologists. Taxon 53:131–143

    Article  Google Scholar 

  • Pys̆ek P, Vojtĕch J, Kuc̆era T (2002) Patterns of invasion in temperate nature reserves. Biol Cons 104:13–24

    Article  Google Scholar 

  • QGIS Development Team (2017) QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org

  • Qian H, Ricklefs RE (2004) Taxon richness and climate in angiosperms: is there a globally consistent relationship that precludes region effects? Am Nat 163:773–779

    Article  PubMed  Google Scholar 

  • R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

  • Raes N, Roos MC, Slik JF, Van Loon EE, Steege HT (2009) Botanical richness and endemicity patterns of Borneo derived from species distribution models. Ecography 32:180–192

    Article  Google Scholar 

  • Reed TM (1983) The role of species-area relationships in reserve choice: a British example. Biol Cons 25:263–271

    Article  Google Scholar 

  • Richerson PJ, Lum K (1980) Patterns of plant species diversity in California: relation to weather and topography. Am Nat 116:504–536

    Article  Google Scholar 

  • Ricklefs RE, He F (2016) Region effects influence local tree species diversity. PNAS USA 113:674–679. https://doi.org/10.1073/pnas.1523683113pmid:26733680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricklefs RE, Lovette IJ (1999) The roles of islands area per se and habitat diversity in the species-area relationships of four Lesser Antilleaen faunal groups. J Anim Ecol 68:1142–1160

    Article  Google Scholar 

  • Riley SJ, DeGloria SD, Elliot R (1999) A terrain ruggedness index that quantifies topographic heterogeneity. Int J Sci 5:23–27

    Google Scholar 

  • Rocchini D, Balkenhol N, Carter G, Foody GM, Gillespie TW, He KS, Kark S, Levin N, Lucas K, Luoto M, Nagendra H, Oldeland J, Ricotta C, Southworth J, Neteler M (2010) Remotely sensed spectral heterogeneity as a proxy of species diversity: recent advances and open challenges. Ecol Inform 5:318–329. https://doi.org/10.1016/j.ecoinf.2010.06.001

    Article  Google Scholar 

  • Rohde K (1992) Latitudinal gradients in species richness: the search for a primary cause. Oikos 65:514–527

    Article  Google Scholar 

  • Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge, p 436

    Book  Google Scholar 

  • Rouse JW, Haas R, Schell J, Deering D (1974) Monitoring vegetation systems in the great plains with ERTS. Proceedings of the Third Earth Resources Technology Satellite- 1 Symposium. Greenbelt, NASA SP-351:301–317

  • Ruiz-Jaen MC, Aide TM (2005) Restoration success: how is it being measured? Restor Ecol 13:569–577. https://doi.org/10.1111/j.1526-100X.2005.00072.x

    Article  Google Scholar 

  • Sætersdal M (1994) Rarity and species/area relationships of vascular plants in deciduous woods, western Norway-applications to nature reserve selection. Ecography 17:23–38

    Article  Google Scholar 

  • Sax DF, Gaines SD (2006) The biogeography of naturalized species and the species-area relationship: reciprocal insights to biogeography and invasion biology. In: Cadotte MW, McMahon SW, Fukami T (eds) Conceptual ecology and invasions biology: reciprocal approaches to nature. Springer, Berlin, pp 449–480

    Chapter  Google Scholar 

  • Sax DF, Brown JH, Gaines SD (2002) Species invasions exceed extinctions on islands world wide: a comparative study of plants and birds. Am Nat 160:766–783

    Article  PubMed  Google Scholar 

  • Scheiner SM (2003) Six types of species-area curves. Global Ecol Biogeogr 12:441–447

    Article  Google Scholar 

  • Schmitt S, Pouteau R, Justeau D, de Boissieu F, Birnbaum P (2017) ssdm: an r package to predict distribution of species richness and composition based on stacked species distribution models. Methods Ecol Evol 8:1795–1803

    Article  Google Scholar 

  • Schwarz M, Zimmermann NE (2005) A new GLM-based method for mapping tree cover continuous fields using regional MODIS reflectance data. Remote Sens Env 95:428–443

    Article  Google Scholar 

  • Sfenthourakis S, Triantis KA (2009) Habitat diversity, ecological requirements of species and the Small Island Effect. Divers Distributions 15:131–140

    Article  Google Scholar 

  • Shen GC, Yu MJ, Hu XS, Mi XC, Ren HB, Sun IF, Ma KP (2009) Species–area relationships explained by the joint effects of dispersal limitation and habitat heterogeneity. Ecology 90:3033–3041

    Article  PubMed  Google Scholar 

  • Sólymos P, Lele SR (2012) Global pattern and local variation in species–area relationships. Global Ecol Biogeogr 21:109–120

    Article  Google Scholar 

  • Sommer JH, Kreft H, Kier G, Jetz W, Mutke J, Barthlott W (2010) Projected impacts of climate change on regional capacities for global plant species richness. Proc Roy Soc Biol Sci 277:2271–2280

    Article  Google Scholar 

  • Stark SC, Bunker D, Carson WP (2006) A null model of exotic plant diversity tested with exotic and native species-area relationships. Ecol Lett 9:136–141

    Article  PubMed  Google Scholar 

  • Stein A, Gerstner K, Kreft H (2014) Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol Lett 17:866–880

    Article  PubMed  Google Scholar 

  • Steinbauer MJ, Field R, Grytnes JA, Trigas P, Ah-Peng C, Attorre F, Birks HJB, Borges PAV, Cardoso P, Chou CH, De Sanctis M, de Sequeira MM, Duarte MC, Elias RB, Fernández-Palacios JM, Gabriel R, Gereau RE, Gillespie RG, Greimler J, Harter DEV, Huang TJ, Irl SDH, Jeanmonod D, Jentsch A, Jump AS, Kueffer C, Nogué S, Otto R, Price J, Romeiras MM, Strasberg D, Stuessy T, Svenning JC, Vetaas OR, Beierkuhnlein C (2016) Topography-driven isolation, speciation and a global increase of endemism with elevation. Global Ecol Biogeogr 25:1097–1107

    Article  Google Scholar 

  • Stohlgren TJ, Barnett DT, Kartesz JT (2003) The rich get richer: patterns of plant invasions in the United States. Front Ecol Environ 1:11–14

    Article  Google Scholar 

  • Stohlgren TJ, Guenther DA, Evangelista PH, Alley N (2005) Patterns of plant species richness, rarity, endemism, and uniqueness in an arid landscape. Ecol Appl 15:715–725

    Article  Google Scholar 

  • Stohlgren TJ, Jarnevich C, Chong GW, Evangelista PH (2006) Scale and plant invasions: a theory of biotic acceptance. Preslia 78:405–426

    Google Scholar 

  • Storch D (2016) The theory of the nested species–area relationship: geometric foundations of biodiversity scaling. J Veg Sci 27:880–891

    Article  Google Scholar 

  • Suarez AV, Tsutsui ND (2004) The value of museum collections for research and society. AIBS Bull 54:66–74

    Google Scholar 

  • Thompson JD (2005) Plant evolution in the mediterranean. Oxford University Press, Oxford

    Book  Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94

    Article  Google Scholar 

  • Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. PNAS USA 102:8245–8250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thuiller W, Midgley FG, Rougeti M, Cowling RM (2006) Predicting patterns of plant species richness in megadiverse South Africa. Ecography 29:733–744

    Article  Google Scholar 

  • Tjørve E (2003) Shapes and functions of species–area curves: a review of possible models. J Biogeogr 30:827–835

    Article  Google Scholar 

  • Tjørve E, Tjørve, KMC (2017) Species-area relationship. In eLS (pp. 1–9). Wiley, Chichester. https://doi.org/10.1002/9780470015902.a0026330

  • Triantis KA, Mylonas M, Lika K, Vardinoyannis K (2003) A model for the species-area-habitat relationship. J Biogeogr 30:19–27

    Article  Google Scholar 

  • Triantis KA, Guilhaumon F, Whittaker RJ (2012) The island species–area relationship: biology and statistics. J Biogeogr 39:215–231

    Article  Google Scholar 

  • Turner KA, Tjørve E (2005) Scale-dependence in species–area relationships. Ecography 28:1–10

    Article  Google Scholar 

  • Veech JA (2000) Choice of species-area function affects identification of hotspots. Cons Biol 14:140–147

    Article  Google Scholar 

  • Wang Z (2010) The dynamics of ecosystem restoration: theoretical considerations on the basis of species richness. Plant Ecol 209:205–217. https://doi.org/10.1007/s11258-009-9680-6

    Article  Google Scholar 

  • Weigelt P, Kreft H (2013) Quantifying island isolation–insights from global patterns of insular plant species richness. Ecography 36:417–429

    Article  Google Scholar 

  • Weigelt P, Jetz W, Kreft H (2013) Bioclimatic and physical characterization of the world’s islands. PNAS USA 110:15307–15312

    Article  PubMed  PubMed Central  Google Scholar 

  • White EP, Ernest SKM, Adler PB, Hurlbert AH, Lyons SK (2010) Integrating spatial and temporal approaches to understanding species richness. Philos Trans R Soc Lond B 365:3633–3643

    Article  Google Scholar 

  • Whitehead DR, Jones CE (1969) Small islands and the equilibrium theory of insular biogeography. Evolution 23:171–179

    Article  PubMed  Google Scholar 

  • Whittaker RJ (1972) Evolution and measurement of species diversity. Taxon 21:213–251

    Article  Google Scholar 

  • Whittaker RJ, Fernández-Palacios JM, Matthews TJ, Borregaard MK, Triantis KA (2017) Island biogeography: taking the long view of nature’s laboratories. Science 357: eaam8326

  • Wilson JB, Peet RK, Pärtel RK, Dengler J, Pärtel M (2012) Plant species richness: the world records. J Veg Sci 23:796–802

    Article  Google Scholar 

  • Xu H, Cao M, Wu Y, Cai L, Cao Y, Wu J, Lei J, Le Z, Ding H, Cui P (2016) Disentangling the determinants of species richness of vascular plants and mammals from national to regional scales. Sci Rep 6:21988. https://doi.org/10.1038/srep21988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang MG, Slik JF, Ma KP (2016) Using species distribution modeling to delineate the botanical richness patterns and phytogeographical regions of China. Sci Rep 6:22400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco D’Antraccoli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Daniel Sanchez Mata.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Antraccoli, M., Roma-Marzio, F., Carta, A. et al. Drivers of floristic richness in the Mediterranean: a case study from Tuscany. Biodivers Conserv 28, 1411–1429 (2019). https://doi.org/10.1007/s10531-019-01730-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-019-01730-x

Keywords

Navigation