Skip to main content
Log in

Floristic distributional patterns in a diverse ecotonal area in South America

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The Paraguayan territory and region, in the centre of South America, is a huge transition area with a succession of various vegetation types. However, this area has received little attention from researchers, with few works published on its flora and its delimitations. We aimed to identify the most important environmental driving forces and delimit floristic patterns in this region, since understanding the forces that drive floristic variations in this ecotonal region could help comprehend the distribution of vegetation not only in this region but throughout South America. We obtained 1234 tree species occurrence records, 205 geographic coordinates and 23 environmental variables and altitude from the ‘NeoTropTree’ database and verified the influence and contribution of environmental factors through variance partition. We tested the floristic consistency of the different vegetation types using dendrogram, indicator species and ordination analyses. We also constructed multiple linear models to check the correlation between species distribution and environmental variables. We found eight consistent vegetation types. The spatial variables coupled with environmental variables were more important than individual environmental or spatial variables. Among the environmental variables, the aridity index was the most important. Despite the importance of spatial factors, due to environmental heterogeneity, we found a gradient related to climate and edaphic variables related to tree flora. The results confirm that the Paraguayan territory and region can be considered to be a diversified and important ecotone area in South America with respect to tree flora.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. doi:10.1111/j.1442-9993.2001.01070.pp.x

    Google Scholar 

  • Baltzer JL, Davies SJ (2012) Rainfall seasonality and pest pressure as determinants of tropical tree species’ distributions. Ecol Evol 2:2682–2694. doi:10.1002/ece3.383

    Article  PubMed  PubMed Central  Google Scholar 

  • Baltzer JL, Davies SJ, Bunyavejchewin S, Noor NSM (2008) The role of desiccation tolerance in determining tree species distributions along the Malay-Tai Peninsula. Funct Ecol 22:221–231. doi:10.1111/j.1365-2435.2007.01374.x

    Article  Google Scholar 

  • Barberis IM, Batista WB, Pire EF, Lewis JP, Léon RJC (2002) Woody population distribution and environmental heterogeneity in a Chaco forest, Argentina. J Veg Sci 13:607–614. doi:10.1111/j.1654-1103.2002.tb02088.x

    Article  Google Scholar 

  • Bivand R (2013) Package ‘spdep’: spatial dependence: weighting schemes, statistics and models. R package version 0.5–56. http://cran.r-project.org/web/packages/spdep/index.html. Accessed 26 June 2016

  • Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632

    Article  PubMed  Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055

    Article  Google Scholar 

  • Borcard D, Legendre P, Avois-Jacquet C, Tuomisto H (2004) Dissecting the spatial structure of ecological data at multiple scales. Ecology 85:1826–1832

    Article  Google Scholar 

  • Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, Dordrecht

    Book  Google Scholar 

  • Borchert R (1998) Responses of tropical trees to rainfall seasonallity ans its long-term changes. Clim Chang 39:381–393. doi:10.1023/A:1005383020063

    Article  Google Scholar 

  • Brenes-Arguedas T, Coley PD, Kursar TA (2009) Pests vs. drought as determinants of plant distribution along a tropical rainfall gradient. Ecology 90:1751–1761. doi:10.1890/08-1271.1

    Article  PubMed  Google Scholar 

  • Bridgewater S, Ratter JA, Ribeiro JF (2004) Biogeographic patterns, b-diversity and dominance in the cerrado biome of Brazil. Biodivers Conserv 13:2295–2318. doi:10.1023/B:BIOC.0000047903.37608.4c

    Article  Google Scholar 

  • Bucher EH, Huszar PC (1999) Sustainable management of the Gran Chaco of South America: ecological promise and economic constraints. J Environ Manag 57:99–108. doi:10.1006/jema.1999.0290

    Article  Google Scholar 

  • Bueno ML, Neves DR, Oliveira-Filho AT, Lehn CR, Ratter JA (2013) A study in an area of transition between seasonally dry tropical forest and mesotrophic Cerradão, in Mato Grosso do Sul, Southwestern Brazil. Edinb J Bot 70:469–481. doi:10.1017/S0960428613000164

    Article  Google Scholar 

  • Bueno ML, Pennington RT, Dexter KG, Kamino LHY, Pontara V, Neves DM, Ratter JA, Oliveira-Filho AT (2016) Effects of Quaternary climatic fluctuations on the distribution of Neotropical savanna tree species. Ecography 39:001–012. doi:10.1111/ecog.01860

    Article  Google Scholar 

  • Cabrera AL, WIllink A (1973) Biogeografía de América Latina. OEA, Washington

    Google Scholar 

  • Chao A, Chiu C-H, Jost L (2016) Statistical challenges of evaluating diversity patterns across environmental gradients in mega-diverse communities. J Veg Sci 27:437–438. doi:10.1111/jvs.12420

    Article  Google Scholar 

  • Conner R, Dickson J (1997) Relationships between bird communities and forest age, structure, species composition and fragmentation in the West Gulf Coastal Plain. Tex J Sci 49:123–138

    Google Scholar 

  • Dalling JW, Muller-Landau HC, Wright SJ, Hubbel SP (2002) Role of dispersal in the recruitment limitation of neotropical pioneer species. J Ecol 90:714–727

    Article  Google Scholar 

  • Dray S (2010) SpacemakeR: spatial modelling. R package version 0.0–5. https://r-forge.r-project.org/sedar. Accessed 12 June 2016

  • Dray S, Legendre P, Blanchet FG (2009) Packfor: Forward Selection with Permutation (Canoco p.46) (R package version 0.0–7/r58). http://R-Forge.R-project.org/projects/sedar/. Accessed 26 June 2016

  • Dray S, Pélissier R, Couteron P, Fortin M-J, Legendre P, Peres-Neto PR, Bellier E, Bivand R, Blanchet FG, Wagner HH (2012) Community ecology in the age of multivariate multiscale spatial analysis. Ecol Monogr 82:257–275. doi:10.1890/11-1183.1

    Article  Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366. doi:10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2

  • Durland WD (1924) The quebracho region of Argentina. Geogr Rev 14:227–241

    Article  Google Scholar 

  • Engelbrecht BMJ, Comita LS, Condit R, Kursar TA, Melvin T, Tyree MT, Turner BL, Hubbell SP (2007) Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447:80–83. doi:10.1038/nature05747

    Article  CAS  PubMed  Google Scholar 

  • Esquivel-Muelbert A, Baker TR, Dexter K, Lewis SL, ter Steege H, Lopez-Gonzalez G, Mendoza AM, Briene R, Feldpausch TR, Pitman N, Alonso A, van der Heidjen G et al (2016) Seasonal drought limits tree species across the Neotropics. Ecography 39:001–012. doi:10.1111/ecog.01904

    Article  Google Scholar 

  • Ferrero ME, Villalba R (2009) Potential of Schinopsis lorentzii for dendrochronological studies in subtropical dry Chaco forests of South America. Trees 23:1275–1284. doi:10.1007/s00468-009-0369-1

    Article  Google Scholar 

  • Fortin M-J, Keitt TH, Maurer BA, Taper ML, Kaufman DM, Blackburn TM (2005) Species’ geographic ranges and distributional limits: pattern analysis and statistical issues. Oikos 108:7–17. doi:10.1111/j.0030-1299.2005.13146.x

    Article  Google Scholar 

  • Francis AP, Currie DJ (2003) A globally consistent richness-climate relationship for angiosperms. Am Nat 161:523–536. doi:10.1086/368223

    Article  PubMed  Google Scholar 

  • Gaston KJ (2000) Global patterns in biodiversity. Nature 45:221–227. doi:10.1038/35012228

    Google Scholar 

  • Gonçalves ET, Souza AF (2014) Floristic variation in ecotonal areas: patterns, determinants and biogeographic origins of subtropical forests in South America. Austral Ecol 39:122–134

    Article  Google Scholar 

  • Gonçalves GR, Santos MPD, Cerqueira PV, Juen L, Bispo AA (2017) The relationship between bird distribution patterns and environmental factors in an ecotone area of northeast Brazil. J Arid Environ. doi:10.1016/j.jaridenv.2017.01.004

    Google Scholar 

  • Guisan A, Weiss SB, Weiss AD (1999) GLM versus CCA spatial modeling of plant species distribution. Plant Ecol 143:107–122. doi:10.1023/A:1009841519580

    Article  Google Scholar 

  • Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan J-F, Kaufman DM, Kerr JT, MittelBach GG, Oberdorff T, O’Brien EM, Porter EE, Turner JRG (2003) Energy, water, and broadscale geographic patterns of species richness. Ecology 84:3105–3117. doi:10.1890/03-8006

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Clim 25:1965–1978. doi:10.1002/joc.1276

    Article  Google Scholar 

  • Hill K, Padwe J, Bejyvagi C, Bepurangi A, Jakugi F, Tykuarangi R, Tykuarangi T (1997) Impact of hunting on large vertebrates in the Mbaracayu Reserve, Paraguay. Conserv Biol 11:1339–1353. doi:10.1046/j.1523-1739.1997.96048.x

  • Huang C, Kim S, Song K, Davis P, Townshend JRG, Altstatt A, Rodas O, Yanosky A, Clay R, Tucker CJ, Musinsky J (2009) Assessment of Paraguay’s forest cover change using Landsat observations. Glob Planet Change 67:1–12. doi:10.1016/j.gloplacha.2008.12.009

    Article  CAS  Google Scholar 

  • Hubbell SP (2001) MacArthur and Wilson’s radical theory. In: Hubbel SP (ed) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, pp 3–29

    Google Scholar 

  • Jones P, Harris I (2008) CRU Time Series (TS): high resolution gridded datasets. NCAS British Atmospheric DataCentre, London

    Google Scholar 

  • Jones MM, Tuomisto H, Clarck DB, Olivas P (2006) Effects of mesoscale environmental heterogeneity and dispersal limitation on floristic variation in rain forest ferns. J Ecol 94:181–195. doi:10.1111/j.1365-2745.2005.01071.x

    Article  CAS  Google Scholar 

  • Jones MM, Tuomisto K, Borcard D, Legendre P, Clarck DB, Olivas PC (2008) Explaining variation in tropical plant community composition: influence of environmental and spatial data quality. Oecologia 155:593–604. doi:10.1007/s00442-007-0923-8

    Article  PubMed  Google Scholar 

  • Kark S (2013) Effects of ecotones on biodiversity. In: Levin SA (ed) Encyclopedia of biodiversity. Elsevier, Oxford, pp 142–148.doi:10.1016/B978-0-12-384719-5.00234-3

  • Kark S, van Rensburg BJ (2007) Ecotones: marginal or central areas of transition? Israel J Ecol Evol 52:29–53. doi:10.1560/IJEE.52.1.29

    Article  Google Scholar 

  • Karst J, Gilbert B, Lechowicz MJ (2005) Fern community assembly: The roles of chance and the environment at local and intermediate scales. Ecology 86:2473–2486

    Article  Google Scholar 

  • Keel S, Gentry AH, Spinzi L (1993) Using vegetation analysis to facilitate the selection of conservation sites in eastern Paraguay. Conserv Biol 7:66–75

    Article  Google Scholar 

  • Killeen TJ, Chavez E, Peña-Claros M, Toledo M, Arroyo L, Caballero J, Correa L, Guillén R, Quevedo R, Saldias M (2006) The Chiquitano dry forest, the transition between humid and dry forest in eastern lowland Bolivia. In: Pennington RT, Lewis GP, Ratter JA (eds) Neotropical savannas and seasonally dry forests: plant diversity, biogeography, and conservation. CRC Press, Boca Raton, pp 213–233

    Google Scholar 

  • Kreft H, Jetz W (2007) Global patterns and determinants of vascular plant diversity. Proc Natl Acad Sci 104:5925–5930. doi:10.1073/pnas.0608361104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kursar TA, Engelbrecht BMJ, Burke A, Tyree MT, Omari BE, Giraldo JP (2009) Tolerance to low leaf water status of tropical tree seedlings is related to drought performance and distribution. Funct Ecol 23:93–102. doi:10.1111/j.1365-2435.2008.01483.x

    Article  Google Scholar 

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280. doi:10.1007/s004420100716

    Article  PubMed  Google Scholar 

  • Legendre P, Legendre L (2012) Numerical ecology, vol 2. Elsevier, Amsterdam

    Google Scholar 

  • Legendre P, Dale MRT, Fortin MJ, Gurevitch J, Hohn M, Myers D (2002) The consequences of spatial structure for the design and analysis of ecological field surveys. Ecography 25:601–615

    Article  Google Scholar 

  • Lepš J, Šmilauer JP (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge

    Google Scholar 

  • Levi L (1874) On the geography and resources of Paraguay. Proc R Geogr Soc Lond 18:117–129

    Google Scholar 

  • Lewis JP (1991) Three levels of floristical variation in the forests of Chaco, Argentina. J Veg Sci 2:125–130

    Article  Google Scholar 

  • Li Q, Yang X, Chu C-J, Zhang J-Q, Yu K-L, Wang G (2011) Relative importance of spatial processes and environmental factors in shaping alpine meadow communities. J Plant Ecol 4:249–258. doi:10.1093/jpe/rtq034

    Article  Google Scholar 

  • Malhi Y, Phillips OL (2004) Tropical forests and global atmospheric change: a synthesis. Philos Trans R Soc Lond B 359:549–555

    Article  CAS  Google Scholar 

  • Mattei G, Müller SC, Porto ML (2007) Corredores de imigração e distribuição de espécies arbóreas no Rio Grande do Sul. Rev Bras Biociências 5:12–14

    Google Scholar 

  • McCune B, Grace JB (2002) Analysis of ecological communities. MjM, Gleneden Beach, Oregon, USA

  • Mereles MF, Rodas O (2014) Assessment of rates of deforestation classes in the Paraguayan Chaco (Great South American Chaco) with comments on the vulnerability of forests fragments to climate change. Clim Chang 127:55–71. doi:10.1007/s10584-014-1256-3

    Article  Google Scholar 

  • Mogni VY, Oakley LJ, Prado DE (2015) The distribution of woody legumes in neotropical dry forests: the pleistocene arc theory 20 years on. Edinb J Bot 72:35–60. doi:10.1017/S0960428614000298

    Article  Google Scholar 

  • Morong T (1889) Paraguay and its flora II. Bot Gaz 14:246–253

    Article  Google Scholar 

  • Neves DRM, Dexter KG, Pennington RT, Bueno ML, Oliveira-Filho AT (2015) Environmental and historical controls of floristic composition across the South American Dry Diagonal. J Biogeogr 42:1566–1576. doi:10.1111/jbi.12529

    Article  Google Scholar 

  • Oakley LJ, Prado DE (2011) El Dominio de los Bosques Secos Estacionales Neotropicales y la presencia del Arco Pleistocénico en la República del Paraguay. Rojasiana 10:55–75

    Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpso GL, Solymos P, Stevens MHH, Wagner H (2016) vegan: community ecology package. R package version 2.0–3. http://CRAN.R-project.org/package=vegan Accessed 10 June 2016

  • Oliveira Filho AT, Jarenkow JA, Rodal MJN (2006) Floristic relationships of seasonally dry forests of eastern South America based on tree species distribution patterns. In: Pennington TR, Lewis GP, Ratter JA (eds) Neotropical savannas and dry forests: plant diversity, biogeography and conservation. CRC Press, Boca Raton, pp 151–184

    Google Scholar 

  • Oliveira-Filho AT (2009) Classificação das fitofisionomias da América do Sul cisandina tropical e subtropical: proposta de um novo sistema—prático e flexível—ou uma injeção a mais de caos? Rodriguésia 60:237–258

    Google Scholar 

  • Oliveira-Filho AT (2015) Um Sistema de classificação fisionômico-ecológica da vegetação Neotropical. In: Eisenlohr PV, Felfili JM, Melo MMRF, Andrade LA, Meira-Neto JAA (eds) Fitossociologia no Brasil: métodos e estudos de casos, vol 2. Editora UFV. Viçosa, Brazil, pp 452–473

    Google Scholar 

  • Oliveira-Filho A, Fontes M (2000) Patterns of floristic differentiation among Atlantic forests in southeastern Brazil and the influence of climate. Biotropica 32:793–810. doi:10.1111/j.1744-7429.2000.tb00619.x

    Article  Google Scholar 

  • Oliveira-Filho AT, Neto ET, Carvalho WAC, Werneck M, Brina AE, Vidal CV, Rezende SC, Pereira JAA (2005) Análise florística do compartimento arbóreo de áreas de floresta atlântica sensu lato na região das bacias do leste. Rodriguésia 56:185–235

    Google Scholar 

  • Oliveira-Filho AT, Budke JC, Jarenkow JA, Eisenlohr PV, Neves DRM (2013) Delving into the variations in tree species composition and richness across South American subtropical Atlantic and Pampean forests. J Plant Ecol 2:1–23. doi:10.1093/jpe/rtt058

    Google Scholar 

  • Paglia PA, De Marco PJ, Costa FM, Pereira RF, Lessa G (1995) Heterogeneidade estrutural e diversidade de pequenos mamíferos em um fragmento de mata secundária de Minas Gerais. Brasil. Rev Bras Zool 12:67–79. doi:10.1590/S0101-81751995000100010

    Article  Google Scholar 

  • Parmentier I, Stévart T, Hardy OJ (2005) The inselberg flora of Atlantic Central Africa. I. Determinants of species assemblages. J Biogeogr 32:685–696. doi:10.1111/j.1365-2699.2004.01243.x

    Article  Google Scholar 

  • Pausas JG, Austin MP (2001) Patterns of plant species richness in relation to different environments: an appraisal. J Veg Sci 12:153–166. doi:10.2307/3236601

    Article  Google Scholar 

  • Paz EA, Bassagoda MJ (2002) Aspectos fitogeográficos y diversidad biológica de las formaciones boscosas del Uruguay. Ciência & Ambiente, Santa Maria 13:35–50

    Google Scholar 

  • Pennington RT, Prado DE, Pendry CA (2000) Neotropical seasonally dry forests and Quaternary vegetation changes. J Biogeogr 27:261–273. doi:10.1046/j.1365-2699.2000.00397.x

    Article  Google Scholar 

  • Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of taxa data matrices: estimation and comparison of fractions. Ecology 87:2614–2625

    Article  PubMed  Google Scholar 

  • Phillips OL, Vargas PC, Monteagudo AL, Cruz AP, Zans M-EC, Sánchez WG, Yli-Hala M, Rose S (2003) Habitat association among Amazonian tree species: a landscape-scale approach. J Ecol 91:757–775. doi:10.1046/j.1365-2745.2003.00815.x

    Article  Google Scholar 

  • Poi De Neiff A, Neiff JJ, Casco SL (2006) Leaf litter decomposition in three wetland types of the Paraná River floodplain. Wetlands 26:558–566. doi:10.1672/0277-5212(2006)26[558:LLDITW]2.0.CO;2

  • Pontara V, Bueno ML, Garcia LE, Oliveira-Filho AT, Pennington RT, Burslem DFRP, Lemos-Filho JP (2016) Fine-scale variation in topography and seasonality determine radial growth of an endangered tree in Brazilian Atlantic forest. Plant Soil 403:115–128. doi:10.1007/s11104-016-2795-3

    Article  CAS  Google Scholar 

  • Prado DE, Gibbs PE (1993) Patterns of species distributions in the dry seasonal forests of South America. Ann Missouri Bot Gard 80:902–927

    Article  Google Scholar 

  • Pyke CR, Condit R, Aguilar S, Lao S (2001) Floristic composition across a climatic gradient in a neotropical lowland forest. J Veg Sci 12:553–566

    Article  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Quintana J, Morse S (2005) Social interactions and resource ownership in two private protected areas of Paraguay. J Environ Manag 77:64–78. doi:10.1016/j.jenvman.2005.02.014

    Article  Google Scholar 

  • Ratter JA, Bridgewater S, Ribeiro JF (2003) Analysis of the floristic composition of the Brazilian cerrado vegetation iii: comparison of the woody vegetation of 376 areas. Edinb J Bot 60:57–109

    Article  Google Scholar 

  • Rezende VL, Eisenlohr PV, Vibrans AC, Oliveira-Filho AT (2015) Humidity, low temperature extremes, and space influence floristic variation across an insightful gradient in the Subtropical Atlantic Forest. Plant Ecol 216:759–774. doi:10.1007/s11258-015-0465-9

    Article  Google Scholar 

  • Rezende VL, Bueno ML, Oliveira-Filho AT (2016) Patterns of tree composition in the southern cone of South America and its relevance to the biogeographic regionalization. Plant Ecol 217:97–110. doi:10.1007/s11258-015-0562-9

    Article  Google Scholar 

  • Risser PG (1995) The status of the science examining ecotones. Bioscience 45:318–325. doi:10.2307/1312492

    Article  Google Scholar 

  • Roberts DW (2016) Package “labdsv” R Package. https://cran.r-project.org/web/packages/labdsv/index.html. Accessed 10 June 2016

  • Roth RR (1976) Spatial heterogeneity and bird species diversity. Ecology 57:773–782. doi:10.2307/1936190

    Article  Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. Version 3.1.0. R Foundation for Statistical Computing, Vienna. http://www.Rproject.org/. Accessed 10 June 2016

  • Santos RM, Oliveira-Filho AT, Eisenlohr PV, Queiroz LP, Cardoso DBOS, Rodal MJN (2012) Identity and relationships of the Arboreal Caatinga among other floristic units of seasonally dry tropical forests (SDTFs) of north-eastern and Central Brazil. Ecol Evol 2:409–428. doi:10.1002/ece3.91

    Article  PubMed  PubMed Central  Google Scholar 

  • Santos HG, Jacomine PKT, Anjos LHC, Oliveira VA, Lumbreras JF, Coelho MR, Almeida JA, Cunha TJF, Oliveira JB (2013) Sistema Brasileiro de Classificação de Solos-3ed. revista e ampliada. Embrapa, Brasilia

  • Scott and Smith (2014) Plant diversity in Paraguay. Natural History Museum, London. http://www.nhm.ac.uk/research-curation/scientific-resources/collections/botanical-collections/plants-paraguay/mbaracayu/search-database/paraguay.dsml. Accessed 23 Nov 2015

  • Silva-Flores R, Pérez-Verdín G, Wehenkel C (2014) Patterns of tree species diversity in relation to climatic factors on the Sierra Madre Occidental, Mexico. PLoS ONE 9:1–16. doi:10.1371/journal.pone.0105034

    Article  Google Scholar 

  • Simberloff DS, Abele LG (1982) Refuge design and island biogeography theory: effects of fragmentation. Am Nat 120:41–50. doi:10.1086/283968

    Article  Google Scholar 

  • Smith TB, Kark S, Schneider CJ, Wayne RK, Moritz C (2011) Biodiversity hotspots and beyond: the need for preserving environmental transitions. Trends Ecol Evol 16:431

    Article  Google Scholar 

  • Spichiger R, Ramella L, Palese R, Mereles F (1991) Proposición de leyenda para la cartografía de las formaciones vegetales del Chaco paraguayo. Contribución al estudio de la flora y de la vegetación—III. Candollea 46:541–564

    Google Scholar 

  • Spichiger R, Palese R, Chautems A, Ramella L (1995) Origin, affinities and diversity hot spots of the Paraugayan dendroflora. Cadollea 50:515–537

    Google Scholar 

  • Spichiger R, Calenge C, Bise B (2004) Geographical zonation in the Neotropics of tree species characteristic of the Paraguay-Paraná Basin. J Biogeogr 31:1489–1501. doi:10.1111/j.1365-2699.2004.01071.x

    Article  Google Scholar 

  • Spichiger R, Calenge C, Bise B (2005) Discriminant analysis of the spatial distribution of plant species occurrences: II. Distribution of major tree communities in Paraguay. Candollea 60:577–593

    Google Scholar 

  • Suzuki R, Shimodaira H (2006) Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22:1540–1542

    Article  CAS  PubMed  Google Scholar 

  • ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179

    Article  Google Scholar 

  • Ter Steege H, Sabatier D, Castellanos H, Andel TV, Duivenvoorden J, Oliveira AA, Ek R, Lilwah R, Mass P, Mori S (2000) An analysis of the floristic composition and diversity of Amazonian forests including those of the Guiana Shield. J Trop Ecol 16:801–828

    Article  Google Scholar 

  • Toledo M, Pooter L, Peña-Claros M, Bongers F (2011) Climate and soil drive forest structure in Bolivian lowland forests. J Trop Ecol 27:333–345. doi:10.1017/S0266467411000034

    Article  Google Scholar 

  • Toledo M, Pena-Claros M, Bongers F, Alarcon A, Balcazar J, Chuvina J et al (2012) Distribution patterns of tropical woody species in response to climatic and edaphic gradients. J Ecol 100:253–263. doi:10.1111/j.1365-2745.2011.01890.x

    Article  Google Scholar 

  • Trindade CRT, Furlanneto LM, Palma-Silva C (2009) Nycthemeral cycles and seasonal variation of limnological factors of a subtropical shallow lake (Rio Grande, RS, Brazil). Acta Limnol Bras 21:35–44

    Google Scholar 

  • Veenendaal EM, Swaine MD (1998) Limits to tree species distribution in lowland tropical rainforests. In: Newbery DM, Prins, HHT, N Brown N (eds) Dynamics of tropical forest communities. 37th Symposium of the British Ecological Society. Blackwell Science, Oxford, UK, pp 163–191

  • Walter H (1985) Vegetation of the earth and ecological systems of the geo-biosphere, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  • Williams JW, Jackson ST, Kutzbacht JE (2007) Projected distributions of novel and disappearing climates by 2100 AD. Proc Natl Acad Sci USA 104:5738–5742. doi:10.1073/pnas.0606292104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wyatt JL, Silman MR (2004) Distance-dependence in two Amazonian palms: effects of spatial and temporal variation in seed predator communities. Oecologia 140:26–35. doi:10.1007/s00442-004-1554-y

    Article  PubMed  Google Scholar 

  • Yang H, Flower RJ, Battarbee RW (2009) Influence of environmental and spatial variables on the distribution of surface sediment diatoms in an upland loch, Scotland. Acta Bot Croat 68:367–380

    Google Scholar 

  • Zardini EM (1993) Paraguay’s floristic inventory. Res Explor 9:128–131

    Google Scholar 

  • Zomer RJ, Bossio DA, Trabucco A, Yuanjie L, Gupta DC, Singh VP (2007) Trees and water: smallholder agroforestry on irrigated lands in Northern India. International Water Management Institute, Colombo, p 45. (IWMI Research Report 122)

  • Zomer RJ, Trabucco A, Bossio DA, van Straaten O, Verchot LV (2008) Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric Ecosyst Environ 126:67–80. doi:10.1016/j.agee.2008.01.014

    Article  Google Scholar 

  • Zuloaga FO, Morrone O, Beltrano MJ (2008) Catálogo de las plantas vasculares del Cono Sur. Monogr Syst Bot from the Missouri Bot Gard 107:1–161

    Google Scholar 

Download references

Acknowledgements

We thank CNPq for a postdoctoral scholarship to M.L.B. (151002/2014-2) and CAPES for a PhD scholarship granted to V.L.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Leandro Bueno.

Additional information

Communicated by Peter Minchin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 906 kb)

Supplementary material 2 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bueno, M.L., Rezende, V.L., Pontara, V. et al. Floristic distributional patterns in a diverse ecotonal area in South America. Plant Ecol 218, 1171–1186 (2017). https://doi.org/10.1007/s11258-017-0759-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-017-0759-1

Keywords

Navigation