Skip to main content

Advertisement

Log in

Colonization potential of an endangered riparian shrub species

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Riparian areas and their plant communities are threatened due to human exploitation and habitat loss. Conservation of riparian vegetation requires knowledge on limiting factors in the biology of species preventing its spread along suitable areas. It needs to be assessed if an endangered species is trapped in an extinction vortex or whether it can recover from its current bottleneck situation by management measurements. We investigate the recovery potential of an endangered riparian shrub species of European rivers, the German tamarisk, Myricaria germanica, by combining field and lab experiments on seed production, germination and wind dispersal with a modelling approach on species distribution. While the seed potential is high, wind-mediated dispersal is average, with a majority of seeds falling next to the mother shrub. The modelled dispersal kernel shows highest goodness-of-fit with a polynomic function. Including this kernel in a model on the future distribution of the species based on identification of suitable habitat, limited spread to new areas in Switzerland after 20 and 50 dispersal events is predicted. Given the current limited distribution of the German tamarisk in Switzerland, conservation efforts are required to allow for the formation of new riparian habitat. Additionally, connectivity along river networks has to be enhanced to help the species to escape the extinction vortex it is trapped in.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barton DR, Taylor WD, Barton D, Taylor W, Biette RM (1985) Dimensions of riparian buffer strips required to maintain trout habitat in southern Ontario streams. North Am J Fish Manag 5:364–378

    Article  Google Scholar 

  • Bill H-C (2000) Besiedlungsdynamik und Populationsbiologie charakteristischer Pionierpflanzenarten nordalpiner Wildflüsse. PhD, Philipps-Universität Marburg

  • Bill H-C, Spahn P, Reich M, Plachter H (1997) Bestandesveränderungen und Besiedlungsdynamik der Deutschen Tamariske, Myricaria germanica Desv., an der Oberen Isar (Bayern) vol 6

  • Bolliger J, Kienast F, Zimmermann NE (2000) Risks of global warming on montane and subalpine forests in Switzerland? A modeling study. Reg Environ Change Nat Soc Asp 1:99–111

    Article  Google Scholar 

  • Bornand C et al (2016) Rote Liste Gefässpflanzen-Gefährdete Arten der Schweiz. Umwelt-Vollzug Nr. 1621. Bundesamt für Umwelt, Bern

  • Breiner F, Guisan A, Bergamini A, Nobis M, Anderson B (2015) Overcoming limitations of modelling rare species by using ensembles of small models. Methods Ecol Evol 6:1210–1218

    Article  Google Scholar 

  • Brook BW, Sodhi NS, Bradshaw CJA (2008) Synergies among extinction drivers under global change. Trends Ecol Evol 23:453–460

    Article  PubMed  Google Scholar 

  • Bullock JM, Clarke RT (2000) Long distance seed dispersal by wind: measuring and modelling the tail of the curve. Oecologia 124:506–521

    Article  CAS  PubMed  Google Scholar 

  • Bullock J, Shea K, Skarpaas O (2006) Measuring plant dispersal: an introduction to field methods and experimental design. Plant Ecol 186:217–234

    Article  Google Scholar 

  • Camathias L, Bergamini A, Kuechler M, Stofer S, Baltensweiler A, Küchler M, Rocchini D (2013) High-resolution remote sensing data improves models of species richness. Appl Veg Sci 16:539–551

    Article  Google Scholar 

  • Catford J, Jansson R (2014) Drowned, buried and carried away: effects of plant traits on the distribution of native and alien species in riparian ecosystems. New Phytol 204:19–36

    Article  PubMed  Google Scholar 

  • Chen F-Q, Xie Z-Q (2007) Reproductive allocation, seed dispersal and germination of Myricaria laxiflora, an endangered species in the Three Gorges Reservoir area. Plant Ecol 191:67–75

    Article  Google Scholar 

  • Clark CJ, Poulsen JR, Bolker BM, Connor EF, Parker VT (2005) Comparative seed shadows of bird-, monkey-, and wind-dispersed trees. Ecology 86:2684–2694

    Article  Google Scholar 

  • Clobert J, Baguette M, Benton TG, Bullock JM (2012) Dispersal ecology and evolution. Oxford University Press, Oxford

    Book  Google Scholar 

  • Driscoll D, Banks S, Barton P, Lindenmayer D, Smith A (2013) Conceptual domain of the matrix in fragmented landscapes. Trends Ecol Evol 28:605–613

    Article  PubMed  Google Scholar 

  • Driscoll D et al (2014) The trajectory of dispersal research in conservation biology. Systematic review. PLoS ONE 9:e95053–e95053

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellenberg H (2010) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. UTB für Wissenschaft: Uni-Taschenbücher, 6., vollst. neu bearb. und stark erw. Aufl. edn. Ulmer, Stuttgart

  • Endress P (1975) Der Verbreitungsrückgang von Myricaria germanica Desv. und Typha minima Hoppe auf der Alpennordseite Graubündens. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 120:1–14

  • Engler R, Guisan A (2009) MigClim: predicting plant distribution and dispersal in a changing climate. Divers Distrib 15:590–601

    Article  Google Scholar 

  • Engler R et al (2009) Predicting future distributions of mountain plants under climate change: does dispersal capacity matter? Ecography 32:34–45

    Article  Google Scholar 

  • ESRI (2015) ArcGIS Desktop: Release 10.2.2. Environmental Systems Research Institute, CA

  • Fiedler PL, Kareiva PM (eds) (1998) Conservation biology for the coming decade, 2nd edn. Chapman & Hall, New York

    Google Scholar 

  • Franklin J (2009) Mapping species distributions: spatial inference and prediction. Cambridge University Press, Cambridge

    Google Scholar 

  • Gilpin ME, Soulé ME (1986) Minimum viable populations: processes of species extinction. In: Soulé ME (ed) Conservation biology: the science of scarcity and diversity. Sinauer, Sunderland, pp 19–34

    Google Scholar 

  • Gostner W, Paternolli M, Schleiss AJ, Scheidegger C, Werth S (in press) Gravel bar inundation frequency: an important parameter for understanding riparian corridor dynamics. Aquatic Sci

  • Greene DF, Calogeropoulos E (2002) Measuring and modelling seed dispersal of terrestrial plants. In: Bullock JM, Kenward RE, Hails RS (eds) Dispersal ecology: The 42nd symposium of the British Ecological Society held at the University of Reading; 2–5 April 2001. Blackwell Science Ltd., Malden, pp 3–23

    Google Scholar 

  • Grivet D, Smouse P, Sork V (2005) A novel approach to an old problem: tracking dispersed seeds. Mol Ecol 14:3585–3595

    Article  PubMed  Google Scholar 

  • Guisan A, Zimmermann N (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Ikeda D, Grady K, Shuster S, Whitham T, Boldgiv B (2014) Incorporating climate change and exotic species into forecasts of riparian forest distribution. PLoS ONE 9:e107037

    Article  PubMed  PubMed Central  Google Scholar 

  • Jansson R, Nilsson C, Renöfält B (2000) Fragmentation of riparian floras in rivers with multiple dams. Ecology 81:899–903

    Article  Google Scholar 

  • Kammerer H (2003) Artenschutzprojekt Deutsche Tamariske–Möglichkeiten und Aussichten einer Wiederbesiedlung von Myricaria germanica im Gesäuse. Nationalpark Gesäuse GmbH

  • Kolly D (2007) Myricaria germanica Populationsentwicklung zwischen 1975 und 2007 in zwei Testgebieten des Kantons Graubünden. University of Bern

  • Kudrnovsky H (2013) Alpine rivers and their ligneous vegetation with Myricaria germanica and riverine landscape diversity in the Eastern Alps: proposing the Isel river system for the Natura 2000 network. Ecomont 5:5–18

    Article  Google Scholar 

  • Kudrnovsky H, Stöhr O (2013) Myricaria germanica Desv. historisch und aktuell in Österreich: ein dramatischer Rückgang einer Indikatorart von europäischem Interesse. STAPFIA: reports 99:13–34

  • Kumar L, Skidmore A, Knowles E (1997) Modelling topographic variation in solar radiation in a GIS environment. Int J Geograph Inform Sci 11:475–497

    Article  Google Scholar 

  • Lehmann A, Allenbach K, Maggini R, Richard J-P, Jacquet J-M, Dao H (2010) Swiss environmental domains: a new spatial framework for reporting on the environment. Federal Office for the Environment FOEN, Environmental studies no 1024, Bern

  • Lener FP (2011) Etablierung und Entwicklung der Deutschen Tamariske (Myricaria germanica) an der oberen Drau in Kärnten. Master Thesis, University of Vienna

  • Lener FP, Egger G, Karrer G (2013) Sprossaufbau und Entwicklung der Deutschen Tamariske (Myricaria germanica) an der Oberen Drau (Kärnten, Österreich). Carinthia II 203:515–552

    Google Scholar 

  • Levey DJ, Silva WR, Galetti M (2002) Seed dispersal and frugivory: ecology, evolution and conservation. Third International Symposium-Workshop on Frugivores and Seed Dispersal, São Pedro, pp 16–511

  • Leyer I (2006) Dispersal, diversity and distribution patterns in pioneer vegetation: the role of river-floodplain connectivity. J Veg Sci 17:407–416

    Article  Google Scholar 

  • Lytle D, Poff NL (2004) Adaptation to natural flow regimes. Trends Ecol Evol 19:94–100

    Article  PubMed  Google Scholar 

  • Manel S, Williams HC, Ormerod SJ (2001) Evaluating presence-absence models in ecology: the need to account for prevalence. J Appl Ecol 38:921–931

    Article  Google Scholar 

  • McGeoch M, Latombe G (2016) Characterizing common and range expanding species. J Biogeogr 43:217–228

    Article  Google Scholar 

  • Mörz S (2013) Einfluss des Keimsubstrats auf die Etablierung und das Konkurrenzverhalten von auentypischen Pflanzenarten sowie invasiven Pflanzenarten. Hochschule Weihenstephan-Triesdorf

  • Müller N, Scharm S (2001) The importance of seed rain and seed bank for the recolonisation of gravel bars in alpine rivers. In: Okuda S (ed) Studies on the vegetation of alluvial plants. Yokohama National University, Yokohama, pp 127–140

  • Naiman RJ, Décamps N, McClain ME (2005) Riparia: Ecology, conservation, and management of streamside communities. Elsevier, New York

    Google Scholar 

  • Nathan R (2001) The challenges of studying dispersal. Trends Ecol Evol 16:481–483

    Article  CAS  Google Scholar 

  • Nathan R (2006) Long-distance dispersal of plants. Science 313:786–788

    Article  CAS  PubMed  Google Scholar 

  • Nathan R, Safriel U, Noy Meir I, Schiller G (2000) Spatiotemporal variation in seed dispersal and recruitment near and far from Pinus halepensis trees. Ecology 81:2156–2169

    Article  Google Scholar 

  • Nathan R, Schurr F, Spiegel O, Steinitz O, Trakhtenbrot A, Tsoar A (2008) Mechanisms of long-distance seed dispersal. Trends Ecol Evol 23:638–647

    Article  PubMed  Google Scholar 

  • Nilsson C, Gardfjell M, Grelsson G (1991) Importance of hydrochory in structuring plant-communities along rivers. Can J Bot 69:2631–2633

    Article  Google Scholar 

  • Nilsson C, Brown R, Jansson R, Merritt D (2010) The role of hydrochory in structuring riparian and wetland vegetation. Biol Rev 85:837–858

    PubMed  Google Scholar 

  • Ovaskainen O, Roy D, Fox R, Anderson B, Orme D (2016) Uncovering hidden spatial structure in species communities with spatially explicit joint species distribution models. Methods Ecol Evol 7:428–436

    Article  Google Scholar 

  • Parolin P (2001) Morphological and physiological adjustments to waterlogging and drought in seedlings of Amazonian floodplain trees. Oecologia 128:326–335

    Article  PubMed  Google Scholar 

  • Phillips S, Anderson R, Schapire R (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Pollock LJ et al (2014) Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM). Methods Ecol Evol 5:397–406

    Article  Google Scholar 

  • Pullin A et al (2009) Conservation focus on europe: major conservation policy issues that need to be informed by conservation science. Conserv Biol 23:818–824

    Article  PubMed  Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org/

  • Richards K, Brasington J, Hughes F (2002) Geomorphic dynamics of floodplains: ecological implications and a potential modelling strategy. Freshw Biol 47:559–579

    Article  Google Scholar 

  • Richardson D, Holmes P, Esler K, Galatowitsch S, Stromberg J (2007) Riparian vegetation: degradation, alien plant invasions, and restoration prospects. Divers Distrib 13:126–139

    Article  Google Scholar 

  • Ronce O (2007) How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu Rev Ecol Evol Syst 38:231–253

    Article  Google Scholar 

  • Ruxton G, Schaefer HM (2012) The conservation physiology of seed dispersal. Philos Trans R Soc Biol Sci 367:1708–1718

    Article  Google Scholar 

  • Sabo J et al (2005) Riparian zones increase regional species richness by harbouring different, not more, species. Ecology 86:56–62

    Article  Google Scholar 

  • Sitzia T, Michielon B, Iacopino S, Kotze DJ (2016) Population dynamics of the endangered shrub Myricaria germanica in a regulated alpine river is influenced by active channel width and distance to check dams. Ecol Eng 95:828–838

    Article  Google Scholar 

  • Stocklin J, Stöcklin J, Winkler E (2004) Optimum reproduction and dispersal strategies of a clonal plant in a metapopulation: a simulation study with Hieracium pilosella. Evol Ecol 18:563–584

    Article  Google Scholar 

  • Sweeney B, Newbold JD (2014) Streamside forest buffer width needed to protect stream water quality, habitat, and organisms: a literature review. J Am Water Resour Assoc 50:560–584

    Article  Google Scholar 

  • Swift T, Hannon S (2010) Critical thresholds associated with habitat loss: a review of the concepts, evidence, and applications. Biol Rev 85:35–53

    Article  PubMed  Google Scholar 

  • Tackenberg O (2003) Modeling long-distance dispersal of plant diaspores by wind. Ecol Monogr 73:173–189

    Article  Google Scholar 

  • Tarboton DG (1997) A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resour Res 33(2):309–319

  • Werth S, Scheidegger C, Vendramin G (2014) Gene flow within and between catchments in the threatened riparian plant Myricaria germanica. PLoS ONE 9:e99400

    Article  PubMed  PubMed Central  Google Scholar 

  • Willson MF (1993) Dispersal mode, seed shadows, and colonization patterns. Vegetatio 107–108:261–280

    Google Scholar 

  • Wubs ERJ et al (2016) Going against the flow: a case for upstream dispersal and detection of uncommon dispersal events. Freshw Biol 61:580–595

    Article  CAS  Google Scholar 

  • Zimmermann N, Kienast F (1999) Predictive mapping of alpine grasslands in Switzerland: species versus community approach. J Veg Sci 10:469–482

    Article  Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers for their suggestions on a previous version of the manuscript. We are grateful to Barbara Krummenacher and Silke Werth for help with field work, and to Lyudmyla Dymytrova, Klaus Ecker and Martin Hägeli for help with ArcGIS layers. Funding was provided by the Swiss Federal Office for the Environment for the project “habitat and sediment dynamics”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Fink.

Additional information

Communicated by Daniel Sanchez Mata.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 136 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fink, S., Lanz, T., Stecher, R. et al. Colonization potential of an endangered riparian shrub species. Biodivers Conserv 26, 2099–2114 (2017). https://doi.org/10.1007/s10531-017-1347-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-017-1347-3

Keywords

Navigation