Skip to main content

Advertisement

Log in

Richness of ancient forest plant species indicates suitable habitats for macrofungi

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Macrofungal species richness generally increases with forest continuity as does the richness of so-called ancient forest plant species (AFS). Based on this assumption, we examined the ability of AFS to indicate macrofungal diversity in six study areas covering a range of elevations and environments in the Czech Republic. In total, we used data from 106 sampling plots (2,500 m2 each) distributed over six types of forest stands reflecting different intensities and temporal stages of forest management. Species composition of vascular plants and macrofungi was recorded by a single inventory and regular 2-year monitoring, respectively. In total, we found 71 AFS and 1,413 macrofungal species, of which 150 were red-listed macrofungal species. We documented that AFS show potential for being used in the prediction of macrofungi species richness, including endangered species, at the local scale (α-diversity). Additionally, we found significant differences in macrofungal species richness depending on study area and type of forest management, which did not, however, derogate the effect of AFS. Spatial congruence between species composition of AFS and macrofungi communities (β-diversity) increased with forest age and decreased with intensity of forest management. If we consider the simplicity of monitoring AFS in comparison to regular monitoring of macrofungi, we found a widely usable tool for estimating macrofungal diversity in all dominant types of managed forest in central Europe. However, we should be aware of the limited ability of AFS to capture macrofungal diversity across a broader spatial context (γ-diversity), especially in areas with a low diversity of AFS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson MJ, Crist TO, Chase JM, Vellend M, Inouye BD, Freestone AL, Sanders NJ, Cornell HV, Comita LS, Davies KF, Harrison SP, Kraft NJB, Stegen JC, Swenson NG (2011) Navigating the multiple meanings of ß diversity: a roadmap for the practicing ecologist. Ecol Lett 14:19–28

    Article  PubMed  Google Scholar 

  • Bässler C, Müller J, Dziock F, Brandl R (2010) Effects of resource availability and climate on the diversity of wood-decaying fungi. J Ecol 98:822–832

    Article  Google Scholar 

  • Blackwell M (2011) The fungi: 1, 2, 3…5.1 million species? Am J Bot 98:426–438

    Article  PubMed  Google Scholar 

  • Blaser S, Prati D, Senn-Irlet B, Fischer M (2013) Effects of forest management on the diversity of deadwood-inhabiting fungi in Central European forests. Forest Ecol Manag 304:42–48

    Article  Google Scholar 

  • Blasi C, Marchetti M, Chiavetta U, Aleffi M, Audisio P, Azzella MM, Brunialti G, Capotorti G, del Vico E, Lattanzi E, Persiani AM, Ravera S, Tilia A, Burrascano S (2010) Multi-taxon and forest structure sampling for identification of indicators and monitoring of old-growth forest. Plant Biosyst 144:160–170

    Article  Google Scholar 

  • Brunet J, Fritz Ö, Richnau G (2010) Biodiversity in European beech forests: a review with recommendations for sustainable forest management. Ecol Bull 53:77–94

    Google Scholar 

  • Cannon PF (1997) Strategies for rapid assessment of fungal diversity. Biodivers Conserv 6:669–680

    Article  Google Scholar 

  • Canullo R, Starlinger F, Granke O, Fischer R, Aamlid D, Neville P (2011) Assessment of ground vegetation. Manual part VII.1, 19 pp. In: ICP Forest (2010) Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. UNECE ICP Forests Programme Co-ordinating Centre, Hamburg

  • Chiarucci A, D’Auria F, de Dominicis V, Laganà A, Perini C, Salerni E (2005) Using vascular plants as a surrogate taxon to maximize fungal species richness in reserve design. Conserv Biol 19:1644–1652

    Article  Google Scholar 

  • Christensen M, Heilmann-Clausen J, Walleyn R, Adamcik S (2004) Wood-inhabiting fungi as indicators of nature value in European beech forests. In: Marchetti M (ed) Monitoring and indicators of forest biodiversity in Europe—from ideas to operationality. EFI Proceedings No. 51, pp 229–237

  • Chytrý M, Rafajová M (2003) Czech National Phytosociological Database: basic statistics of the available vegetation-plot data. Preslia 75:1–15

    Google Scholar 

  • Decocq G, Aubert M, Dupont F, Bardat J, Waltez-Franger A, Saguez R, de Foucault B, Alard D, Delelis-Dusollier A (2005) Silviculture-driven vegetation change in a European temperate deciduous forest. Ann For Sci 62:313–323

    Article  Google Scholar 

  • Dengler J, Jansen F, Glöckler F, Peet RK, De Cáceres M, Chytrý M, Ewald J, Oldeland J, Lopez-Gonzalez G, Finckh M, Mucina L, Rodwell JS, Schaminée JHJ, Spencer N (2011) The Global Index of Vegetation-Plot Databases (GIVD): a new resource for vegetation science. J Veg Sci 22:582–597

    Article  Google Scholar 

  • Favreau JM, Drew CA, Hess GR, Rubino MJ, Koch FH, Eschelbach KA (2006) Recommendations for assessing the effectiveness of surrogate species approaches. Biodivers Conserv 15:3949–3969

    Article  Google Scholar 

  • Ferrier S (2002) Mapping spatial pattern in biodiversity for regional conservation planning: where to from here? Syst Biol 51:331–363

    Article  PubMed  Google Scholar 

  • Flinn KM, Vellend M (2005) Recovery of forest plant communities in post-agricultural landscapes. Front Ecol Environ 3:243–250

    Article  Google Scholar 

  • Halme P, Kotiaho JS (2012) The importance of timing and number of surveys in fungal biodiversity research. Biodivers Conserv 21:205–219

    Article  Google Scholar 

  • Halme P, Heilmann-Clausen J, Räma T, Kosonen T, Kunttu P (2012) Monitoring fungal biodiversity—towards an integrated approach. Fungal Ecol 5:750–758

    Article  Google Scholar 

  • Halme P, Ódor P, Christensen M, Plitaver A, Veerkamp M, Walleyn R, Siller I, Heilmann-Clausen J (2013) The effects of habitat degradation on metacommunity structure of wood-inhabiting fungi in European beech forests. Biol Conserv 168:24–30

    Article  Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432

    Article  Google Scholar 

  • Hawksworth DL (2003) Monitoring and safeguarding fungal resources worldwide: the need for an international collaborative MycoAction Plan. Fungal Divers 13:29–45

    Google Scholar 

  • Heilmann-Clausen J, Aude E, Christensen M (2005) Cryptogam communities on decaying deciduous wood—does tree species diversity matter? Biodivers Conserv 14:2061–2078

    Article  Google Scholar 

  • Hermy M, Verheyen K (2007) Legacies of the past in the present-day forest biodiversity: a review of past land-use effects on forest plant species composition and diversity. Ecol Res 22:361–371

    Article  Google Scholar 

  • Hermy M, Honnay O, Firbank L, Grashof-Bokdam C, Lawesson JE (1999) An ecological comparison between ancient and other forest plant species of Europe, and the implications for forest conservation. Biol Conserv 91:9–22

    Article  Google Scholar 

  • Hofmeister J, Hošek J, Modrý M, Roleček J (2009) The influence of light and nutrient availability on herb layer species richness in oak-dominated forests in central Bohemia. Plant Ecol 205:57–75

    Article  Google Scholar 

  • Holec J, Beran M (eds) (2006) Červený seznam hub (makromycetů) České republiky [Red list of fungi (macromycetes) of the Czech Republic]. Příroda, Praha 24:1–282 (in Czech with English summary)

  • Honnay O, Degroote B, Hermy M (1994) Ancient-forest plant species in Western Belgium: a species list and possible ecological mechanisms. Belg J Bot 130:139–154

    Google Scholar 

  • Honnay O, Bossuyt B, Verheyen K, Butaye J, Jacquemyn H, Hermy M (2002) Ecological perspectives for the restoration of plant communities in European temperate forests. Biodivers Conserv 11:213–242

    Article  Google Scholar 

  • Honnay O, Jacquemyn H, Bossuyt B, Hermy M (2005) Forest fragmentation effects on patch occupancy and population viability of herbaceous plant species. New Phytol 166:723–736

  • Jones MD, Durall DM, Gairney JWG (2003) Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytol 157:399–422

    Article  Google Scholar 

  • Jonsson BG, Kruys N, Ranius T (2005) Ecology of species living on dead wood—lessons for dead wood management. Silva Fenn 39:289–309

    Google Scholar 

  • Kubát K, Hrouda L, Chrtek J jun, Kaplan Z, Kirchner J, Štěpánek J (eds) (2002) Klíč ke květeně České republiky [Key to the flora of the Czech Republic]. Academia, Praha

    Google Scholar 

  • Kučera T, Chytrý M (2001) Bučiny [beech forests]. In: Chytrý M, Kučera T, Kočí M (eds) Katalog biotopů České republiky. Nature Conservation Agency of the Czech Republic, Prague, pp 190–198 (in Czech)

    Google Scholar 

  • Küffer N, Gillet F, Senn-Irlet B, Aragno M, Job D (2008) Ecological determinants of fungal diversity on dead wood in European forests. Fungal Divers 30:83–95

    Google Scholar 

  • Laird NM, Ware JH (1982) Random-effects models for longitudinal data. Biometrics 38:963–974

    Article  CAS  PubMed  Google Scholar 

  • Landcare Research and Royal Botanic Gardens Kew: Mycology (2013) Index Fungorum. www.indexfungorum.org. Accessed Jan 2013

  • Lawesson JE, de Blust G, Grashof C, Firbank L, Honnay O, Hermy M, Hobitz P, Jensen LM (1998) Species diversity and area-relationships in Danish beech forests. Forest Ecol Manag 106:235–245

    Article  Google Scholar 

  • Lonsdale D, Pautasso M, Holdenrieder O (2008) Wood-decaying fungi in the forest: conservation needs and management options. Eur J For Res 127:1–22

    Article  Google Scholar 

  • McCarthy MA, Thompson CJ, Moore AL, Possingham HP (2011) Designing nature reserves in the face of uncertainty. Ecol Lett 14:470–475

    Article  PubMed  Google Scholar 

  • McMullan-Fisher SJM, Kirkpatrick JB, May TW, Pharo EJ (2010) Surrogates for macrofungi and mosses in reservation planning. Conserv Biol 24:730–736

    Article  PubMed  Google Scholar 

  • Moora M, Daniell T, Kalle H, Liira J, Pussa K, Roosaluste E, Opik M, Wheatley R, Zobel M (2007) Spatial pattern and species richness of boreonemoral forest understory and its determinants: a comparison of differently managed forests. Forest Ecol Manag 250:64–70

    Article  Google Scholar 

  • Mueller GM, Schmit JP (2007) Fungal biodiversity: what do we know? What can we predict? Biodivers Conserv 16:1–5

    Article  Google Scholar 

  • Mueller GM, Schmit JP, Lealock PR, Buyck B, Cifuentes J, Desjardin DE, Halling RE, Hjortstam K, Iturriaga T, Larsson KH, Lodge DJ, May TW, Minter D, Rajchenberg M, Redhead SA, Ryvarden L, Trappe JM, Watling R, Wu Q (2007) Global diversity and distribution of macrofungi. Biodivers Conserv 16:37–48

    Article  Google Scholar 

  • Mueller-Dombois D, Ellenberg H (2002) Aims and methods of vegetation ecology, 2nd edn. Blackburn Press, New Jersey

    Google Scholar 

  • Müller J, Hothorn T, Pretzsch H (2007a) Long-term effects of logging intensity on structures, birds, saproxylic beetles and wood-inhabiting fungi in stands of European beech Fagus sylvatica L. Forest Ecol Manag 242:297–305

    Article  Google Scholar 

  • Müller J, Engel H, Blaschke M (2007b) Assemblages of wood-inhabiting fungi related to silvicultural management intensity in beech forests in southern Germany. Eur J For Res 126:513–527

    Article  Google Scholar 

  • Nordén B, Applequist T (2001) Conceptual problems of ecological continuity and its biodindicators. Biodivers Conserv 10:779–791

    Article  Google Scholar 

  • Nordén B, Ryberg M, Götmark F, Olausson B (2004) Relative importance of coarse and fine woody debris for the diversity of wood-inhabiting fungi in temperate broadleaf forests. Biol Conserv 117:1–10

    Article  Google Scholar 

  • Nordén B, Götmark F, Ryberg M, Paltto H, Allmer J (2008) Partial cutting reduces species richness of fungi on woody debris in oak-rich forests. Can J For Res 38:1807–1816

    Article  Google Scholar 

  • Nordén J, Penttila R, Siitonen J, Tomppo E, Ovaskainen O (2013) Specialist species of wood-inhabiting fungi struggle while generalist thrive in fragmented boreal forests. J Ecol 101:701–712

    Article  Google Scholar 

  • Ódor P, Heilmann-Clausen J, Christensen M, Aude E, van Dort KW, Piltaver A, Siller I, Veerkamp MT, Walleyn R, Standovár T, van Hees AFM, Kosec J, Matocec N, Kraigher H, Grebenc T (2006) Diversity of dead wood inhabiting fungi and bryophytes in semi-natural beech forests in Europe. Biol Conserv 131:58–71

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2012) Vegan: community ecology package. R—package, version 2.0-5

  • Peterken GF (1996) Natural woodlands. Cambridge University Press, Cambridge

    Google Scholar 

  • Peterken GF, Francis JL (1999) Open spaces as habitats for vascular ground flora species in the woods of central Lincolnshire, UK. Biol Conserv 91:55–72

    Article  Google Scholar 

  • Pharo EJ, Beattie AJ, Binns D (1999) Vascular plant diversity as a surrogate for bryophyte and lichen diversity. Conserv Biol 13:282–292

    Article  Google Scholar 

  • Pimm SL, Russell GJ, Gittleman JL, Brooks TM (1995) The future of biodiversity. Science 269:347–350

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-plus. Springer, New York

    Book  Google Scholar 

  • Pinheiro J, Bates D, Debroy S, Sarkar D, R-core team (2013) Package ‘nlme’. R—package, version 3.1-108

  • Pouska V, Svoboda M, Lepšová A (2010) The diversity of wood-decaying fungi in relation to changing site condition in an old-growth mountain spruce forest, Central Europe. Eur J For Res 129:219–231

    Article  Google Scholar 

  • Prendergast JR, Quinn RM, Lawton JH, Eversham BC, Gibbons DW (1993) Rare species, the coincidence of diversity hotspots and conservation strategies. Nature 365:335–337

    Article  Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.r-project.org/. Accessed Feb 2013

  • Rodrigues ASL, Brooks TM (2007) Shortcuts for biodiversity conservation planning: the effectiveness of surrogates. Ann Rev Ecol Evol S 38:713–737

    Article  Google Scholar 

  • Sætersdal M, Gjerde I, Blom HH, Ihlen PG, Myrserth EW, Pommeresche R, Skartveit J, Solhøy T, Aas O (2003) Vascular plants as a surrogate species group in complementary site selection for bryophytes, macrolichens, spiders, carabids, staphylinids, snails, and wood polypore fungi in a northern forest. Biol Conserv 115:21–31

    Article  Google Scholar 

  • Santi E, Maccherini S, Rocchini D, Bonini I, Brunialti G, Favilli L, Perini C, Pezzo F, Piazzini S, Rota E, Salerni E, Chiarucci A (2010) Simple to sample: vascular plants as a surrogate group in a nature reserve. J Nat Conserv 18:2–11

    Article  Google Scholar 

  • Senn-Irlet B, Heilmann-Clausen J, Genney D, Dahlberg A (2007) Guidance for conservation of macrofungi in Europe. The Directorate of Culture and Cultural and Natural Heritage Council of Europe, Strasbourg, p 39

    Google Scholar 

  • Skov F, Lawesson JE (2000) Estimation of plant species richness from systematically placed plots in a managed forest ecosystem. Nord J Bot 20:477–483

    Article  Google Scholar 

  • Stokland JN, Tomter SM, Söderberg U (2004) Development of dead wood indicators for biodiversity monitoring: experience from Scandinavia. In: Marchetti M (ed) Monitoring and indicators of forest biodiversity in Europe—from ideas to operationality. EFI Proceedings No. 51, pp 205–226

  • Straatsma G, Ayer F, Egli S (2001) Species richness, abundance, and phenology of fungal fruit bodies over 21 years in a Swiss forest plot. Mycol Res 105:515–523

    Article  Google Scholar 

  • Su JC, Debinski DM, Jakubauskas ME, Kindscher K (2004) Beyond species richness: community similarity as a measure of cross-taxon congruence for coarse-filter conservation. Conserv Biol 18:167–173

    Article  Google Scholar 

  • Tolasz R (ed) (2007) Climate atlas of Czechia. Czech Hydrometerorological Institute, Prague

    Google Scholar 

  • Vellend M, Verheyen K, Flinn KM, Jacquemyn H, Kolb A, Van Calster H, Peterken G, Graae BJ, Bellemare J, Honnay O, Brunet J, Wulf M, Gerhardt F, Hermy M (2007) Homogenization of forest plant communities and weakening of species-environment relationships via agricultural land use. J Ecol 95:565–573

    Article  Google Scholar 

  • Willis KJ (1993) How old is ancient woodland? Trends Ecol Evol 8:427–428

    Article  CAS  PubMed  Google Scholar 

  • Winter S, Möller GC (2008) Microhabitats in lowland beech forests as monitoring tool for nature conservation. Forest Ecol Manag 255:1251–1261

    Article  Google Scholar 

  • Wolters V, Bengtsson J, Zaitsev AS (2006) Relationship among the species richness of different taxa. Ecology 87:1886–1895

    Article  PubMed  Google Scholar 

  • Wulf M (1997) Plant species as indicators of ancient woodland in northwestern Germany. J Veg Sci 8:635–642

    Article  Google Scholar 

  • Wulf M (2003) Preference of plant species for woodlands with differing habitat continuities. Flora 198:444–460

    Article  Google Scholar 

Download references

Acknowledgments

We thank M. Dančák, A. Jírová, L. Kratochvílová, M. Lepší, Z. Plesková and P. Veselý for surveying herb-layer vegetation and J. Novotný and J. Hlásek for participation in sampling of macrofungi. Some critical taxa were identified by Z. Pouzar (Corticiaceae s.l.), P. Vampola (Polyporales s.l.) and S. Komínková (Mycena). Technical support was provided by L. Antolík, K. Baltaziuk, L. Čížek, M. Flachs, J. Haščík, P. Hubený, H. Hunkařová, V. Iarema, M. Jakub, J. Jaroš, P. Koukal, J. Kšír, Z. Melín, A. Petrbok, K. Stupková, T. Svoboda, A. Tenčík, P. Zach, M. Zajíček and I. Zítková. We thank J.W. Jongepier and J. Titus for improving English and clarity of manuscript. Editor in Chief D. Hawksworth and three anonymous reviewers gave valuable comments on the manuscript. We are grateful to the respective forest administrations for cooperation in our research. This study was supported by grant VaV SP/2d1/146/08 from the Ministry of the Environment of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeňýk Hofmeister.

Additional information

Communicated by Francis Brearley.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 1313 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofmeister, J., Hošek, J., Brabec, M. et al. Richness of ancient forest plant species indicates suitable habitats for macrofungi. Biodivers Conserv 23, 2015–2031 (2014). https://doi.org/10.1007/s10531-014-0701-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-014-0701-y

Keywords

Navigation