Skip to main content

Advertisement

Log in

Bats of the Chilean temperate rainforest: patterns of landscape use in a mosaic of native forests, eucalyptus plantations and grasslands within a South American biodiversity hotspot

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Forestry plantations represent about 4 % of the global land cover and demand for wood is steadily increasing worldwide. Impacts of forest plantations on biodiversity are controversial; forest plantations could positively influence biodiversity by producing a buffer zone between native forests and agriculture, while replacement of native forests with plantations could reduce biodiversity. Chile is one of the main producers of wood worldwide, and production is largely based on intensively managed monocultures of exotic tree species. Only a few studies have looked at the effects of forestry plantations on biodiversity in Chile, mainly focusing on pine plantations. The aim of this study was to characterize habitat use and richness of bats between native forests, eucalyptus plantations and grasslands in a biodiversity hotspot in southern Chile to determine how land use affects an important mammalian taxa. We found no difference in use or richness of bats in eucalyptus plantations versus native forests. Regional context within the larger Valdivian watershed (Andes, central valley, coastal range) had a stronger influence on bat activity and richness than land use type (native forest, plantation, grassland), with the Andean region being the most diverse and where most bat activity is concentrated. Our results suggest that the composition and structure of the surrounding landscape mosaic may be fundamental to determine the impacts of forestry and human land use on biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams AM, Jantzen MK, Hamilton RM, Fenton MB (2012) Do you hear what I hear? Implications of detector selection for acoustic monitoring of bats. Methods Ecol Evol 3(6):992–998

    Article  Google Scholar 

  • Barlow J, Gardner TA, Araujo IS, Avila-Pires TC, Bonaldo AB, Costa JE, Esposito MC, Ferreira LV, Hawes J, Hernandez MM, Hoogmoed MS, Leite RN, Lo-Man-Hung NF, Malcolm JR, Martins MB, Mestre LAM, Miranda-Santos R, Nunes-Gutjahr AL, Overal WL, Parry L, Peters SL, Ribeiro-Junior MA, da Silva MNF, Motta CD, Peres CA (2007) Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc Natl Acad Sci USA 104(47):18555–18560. doi:10.1073/pnas.0703333104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barlow J, Gardner T, Parry L, Silveira JM, Louzasa J, Peres C (2012) Quantifying biodiversity in Eucalyptus plantations and primary and secondary tropical forests: results from a multi-taxa comparison from the brazilian amazon. In: Simonetti JA (ed) Biodiversity conservation in agroforestry landscapes. Editorial Universitaria, Santiago, pp 41–59

    Google Scholar 

  • Bhagwat SA, Willis KJ, Birks HJB, Whittaker RJ (2008) Agroforestry: a refuge for tropical biodiversity? Trends Ecol Evol 23(5):261–267. doi:10.1016/j.tree.2008.01.005

    Article  PubMed  Google Scholar 

  • Boyles JG, Cryan PM, McCracken GF, Kunz TH (2011) Economic importance of bats. Science 332(6025):41–42

    Article  PubMed  Google Scholar 

  • Brockerhoff EG, Jactel H, Parrotta JA, Quine CP, Sayer J (2008) Plantation forests and biodiversity: oxymoron or opportunity? Biodivers Conserv 17(5):925–951

    Article  Google Scholar 

  • Brooks TM, Mittermeier RA, da Fonseca GAB, Gerlach J, Hoffmann M, Lamoreux JF, Mittermeier CG, Pilgrim JD, Rodrigues ASL (2006) Global biodiversity conservation priorities. Science 313(5783):58–61

    Article  CAS  PubMed  Google Scholar 

  • Canals M, Grossi B, Iriarte-Diaz J, Veloso C (2005) Biomechanical and ecological relationships of wing morphology of eight Chilean bats. Revista Chilena De Historia Natural 78(2):215–227

    Article  Google Scholar 

  • Clarke FM, Rostant LV, Racey PA (2005) Life after logging: post-logging recovery of a neotropical bat community. J Appl Ecol 42(2):409–420. doi:10.1111/j.1365-2664.2005.01024.x

    Article  Google Scholar 

  • Cleveland CJ, Betke M, Federico P, Frank JD, Hallam TG, Horn J, Lopez JD, McCracken GF, Medellin RA, Moreno-Valdez A, Sansone CG, Westbrook JK, Kunz TH (2006) Economic value of the pest control service provided by Brazilian free-tailed bats in south-central Texas. Front Ecol Environ 4(5):238–243

    Article  Google Scholar 

  • Corben C (2004) Anapocket—Anabat on a PDA, v2.3.4. Available at http://www.hoarybat.com

  • Echeverria C, Newton A, Nahuelhual L, Coomes D, Rey-Benayas JM (2012) How landscapes change: Integration of spatial patterns and human processes in temperate landscapes of southern Chile. Applied Geography 32 (2):822-831

  • Estades CF, Temple SA (1999) Deciduous-forest bird communities in a fragmented landscape dominated by exotic pine plantations. Ecol Appl 9(2):573–585

    Article  Google Scholar 

  • Faria D, Laps RR, Baumgarten J, Cetra M (2006) Bat and bird assemblages from forests and shade cacao plantations in two contrasting landscapes in the Atlantic Forest of southern Bahia, Brazil. Biodivers Conserv 15(2):587–612. doi:10.1007/s10531-005-2089-1

    Article  Google Scholar 

  • Favi M, Yung V, Pavletic C, Ramirez E, De Mattos CC, De Mattos CA (1999) Role of insectivorous bats in the transmission of Rabies in Chile. Archivos De Medicina Veterinaria 31(2):157–165

    Google Scholar 

  • Fischer J, Stott J, Law BS (2010) The disproportionate value of scattered trees. Biol Conserv 143(6):1564–1567. doi:10.1016/j.biocon.2010.03.030

    Article  Google Scholar 

  • Frick WF (2013) Acoustic monitoring of bats, considerations of options for long-term monitoring. Therya 4:69–78

    Article  Google Scholar 

  • García-Morales R, Badano EI, Moreno CE (2013) Response of Neotropical bat assemblages to human land use. Conserv Biol. doi:10.1111/cobi.12099

    PubMed  Google Scholar 

  • Gehrt SD, Chelsvig JE (2003) Bat activity in an urban landscape: patterns at the landscape and microhabitat scale. Ecol Appl 13(4):939–950. doi:10.1890/02-5188

    Article  Google Scholar 

  • Gehrt SD, Chelsvig JE (2004) Species-specific patterns of bat activity in an urban landscape. Ecol Appl 14:625–635

    Article  Google Scholar 

  • Harvey CA, Villalobos JAG (2007) Agroforestry systems conserve species-rich but modified assemblages of tropical birds and bats. Biodivers Conserv 16(8):2257–2292. doi:10.1007/s10531-007-9194-2

    Article  Google Scholar 

  • Hayes JP (1997) Temporal variation in activity of bats and the design of echolocation-monitoring studies. J Mammal 78:514–524

    Article  Google Scholar 

  • Jaberg C, Guisan A (2001) Modelling the distribution of bats in relation to landscape structure in a temperate mountain environment. J Appl Ecol 38(6):1169–1181

    Article  Google Scholar 

  • Jaksic FM (1997) Ecologia de los vertebrados de Chile, 1st edn. Ediciones Universidad Catolica de Chile, Santiago

    Google Scholar 

  • Law BS, Anderson J, Chidel M (1999) Bat communities in a fragmented forest landscape on the south-west slopes of New South Wales, Australia. Biol Conser 88(3):333–345

    Article  Google Scholar 

  • Mehr M, Brandl R, Hothorn T, Dziock F, Forster B, Muller J (2011) Land use is more important than climate for species richness and composition of bat assemblages on a regional scale. Mamm Biol 76(4):451–460

    Article  Google Scholar 

  • Messina T (2004) The Nevada bat technical notes archive: remote transducers for Anabats. Available at http://home.earthlink.net/~nevadabat/Remote/ExtCableFab.html

  • O’Farrell MJ, Miller BW, Gannon WL (1999) Qualitative identification of free-flying bats using the Anabat detector. J Mammal 80:11–23

    Article  Google Scholar 

  • Ossa G, Ibarra JT, Barboza K, Hernandez F, Galvez N, Laker J, Bonacic C (2010) Analysis of the echolocation calls and morphometry of a population of Myotis chiloensis (Waterhouse, 1838) from the southern Chilean temperate forest. Ciencia E Investigacion Agraria 37(2):131–139

    Google Scholar 

  • Paquette A, Messier C (2010) The role of plantations in managing the world’s forests in the Anthropocene. Front Ecol Environ 8(1):27–34

    Article  Google Scholar 

  • Parsons S, Szewczak JM (2009) Detecting, recording, and analyzing the vocalizations of bats. In: Kunz TH, Parsons S (eds) Ecological and behavioral methods for the study of bats, 2nd edn. The John Hopkins University Press, Baltimore, pp 91–111

    Google Scholar 

  • Parsons S, Boonman AM, Obrist MK (2000) Advantages and disadvantages of techniques for transforming and analyzing chiropteran echolocation calls. J Mammal 81(4):927–938

    Article  Google Scholar 

  • Pawson SM, Brin A, Brockerhoff E, Lamb D, Payn TW, Paquette A, Parrotta J (2013) Plantation forests, climate change and biodiversity. Biodivers Conserv. doi:10.1007/s10531-10013-10458-10538

    Google Scholar 

  • Phommexay P, Satasook C, Bates P, Pearch M, Bumrungsri S (2011) The impact of rubber plantations on the diversity and activity of understorey insectivorous bats in southern Thailand. Biodivers Conserv 20(7):1441–1456. doi:10.1007/s10531-011-0036-x

    Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Racey PA, Entwistle AC (2003) Conservation ecology of bats. In: Kunz TH, Fenton MB (eds) Bat ecology. The University of Chicago Press, Chicago, pp 680–743

    Google Scholar 

  • Rahbek C (1997) The relationship among area, elevation, and regional species richness in neotropical birds. Am Nat 149(5):875–902

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-San Pedro A, Simonetti JA (2013a) Acoustic identification of four species of bats (Order Chiroptera) in central Chile. Bioacoustics 22(2):165–172. doi:10.1080/09524622.2013.763384

    Article  Google Scholar 

  • Rodriguez-San Pedro A, Simonetti JA (2013b) Foraging activity by bats in a fragmented landscape dominated by exotic pine plantations in central Chile. Acta Chiropterologica 15(2):393–398. doi:10.3161/150811013x679017

    Article  Google Scholar 

  • Saavedra B, Simonetti JA (2005) Small mammals of Maulino forest remnants, a vanishing ecosystem of south-central Chile. Mammalia 69(3–4):337–348

    Google Scholar 

  • Schulze CH, Waltert M, Kessler PJA, Pitopang R, Shahabuddin, Veddeler D, Muhlenberg M, Gradstein SR, Leuschner C, Steffan-Dewenter I, Tscharntke T (2004) Biodiversity indicator groups of tropical land-use systems: comparing plants, birds, and insects. Ecol Appl 14(5):1321–1333. doi:10.1890/02-5409

  • Sieving KE, Willson MF, De Santo TL (2000) Defining corridor functions for endemic birds in fragmented south-temperate rainforest. Conserv Biol 14(4):1120–1132

    Article  Google Scholar 

  • Tomasevic JA, Estades CF (2008) Effects of the structure of pine plantations on their “softness” as barriers for ground-dwelling forest birds in south-central Chile. For Ecol Manage 255(3–4):810–816

    Article  Google Scholar 

  • Vergara PM, Simonetti JA (2004) Avian responses to fragmentation of the Maulino Forest in central Chile. Oryx 38(4):383–388

    Article  Google Scholar 

  • Vergara PM, Simonetti JA (2006) Abundance and movement of understory birds in a maulino forest fragmented by pine plantations. Biodivers Conserv 15(12):3937–3947

    Article  Google Scholar 

  • Williams-Guillen K, Perfecto I (2010) Effects of agricultural intensification on the assemblage of leaf-nosed bats (Phyllostomidae) in a coffee landscape in Chiapas, Mexico. Biotropica 42(5):605–613. doi:10.1111/j.1744-7429.2010.00626.x

    Article  Google Scholar 

  • Willig MR, Presley SJ, Bloch CP, Castro-Arellano I, Cisneros LM, Higgins CL, Klingbeil BT (2011) Tropical metacommunities along elevational gradients: effects of forest type and other environmental factors. Oikos 120(10):1497–1508. doi:10.1111/j.1600-0706.2011.19218.x

    Article  Google Scholar 

  • Willson MF (2004) Loss of habitat connectivity hinders pair formation and juvenile dispersal of Chucao Tapaculos in Chilean rainforest. Condor 106(1):166–171

    Article  Google Scholar 

  • Willson MF, Desanto TI, Sabag C, Armesto JJ (1994) Avian communities of fragmented south-temperate rain-forests in Chile. Conserv Biol 8(2):508–520

    Article  Google Scholar 

  • Wilson DE, Reeder DM (1993) Mammalian species of the world. A taxonomic and geographic reference. Smithsonian Institution Press, Washington D. C.

    Google Scholar 

Download references

Acknowledgments

This project was funded by a National Geographic exploration CRE Grant Number 8538-08. We thank the very helpful comments from two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine N. Meynard.

Additional information

Communicated by Melvin Gumal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meynard, C.N., Soto-Gamboa, M., Heady, P.A. et al. Bats of the Chilean temperate rainforest: patterns of landscape use in a mosaic of native forests, eucalyptus plantations and grasslands within a South American biodiversity hotspot. Biodivers Conserv 23, 1949–1963 (2014). https://doi.org/10.1007/s10531-014-0697-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-014-0697-3

Keywords

Navigation