Skip to main content

Advertisement

Log in

Nature conservation: priority-setting needs a global change

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

The limited resources available for the conservation of biodiversity and ecosystem services call for prioritisation schemes. For instance, in the process of systematic conservation planning site selection is partly determined by efficiency gains. In this paper we present an alternative method for global spatial priority-setting based on ecological indicators, combined with social and economic conditions that influence the effectiveness of conservation, and measures for the long-term persistence of biodiversity. In the analysis the assumption made is that nature conservation should prioritize the effective maintenance of functional ecosystems that do not only provide the most ecosystem services but are also more likely to have a high adaptive capacity towards unavoidable environmental change. Furthermore, the effectiveness and permanence of conservation projects is tied to certain socioeconomic and political conditions that, as we suggest, should be evaluated as part of the conservation priority-setting process. We propose three new priority categories: eco-functionally wise (EcoWise), socioeconomically wise (SocioWise) and proactive allocation of conservation resources considering future climate change (ClimateWise) expressed as indices based on 16 different indicators. Analysing the combined effects of these three categories (EcoSocioClimateWise), in a spatially explicit way highlights the importance of tropical, subtropical but also some temperate and boreal forest areas all of which are characterized by high values of vegetation density, tree height and carbon storage. Our recommendations for policy makers prompt a shift in conservation planning towards advocating the use of ecological and socioeconomic indicators in combination with proxies for the vulnerability to future climate change impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adger WN (2003) Social capital, collective action, and adaptation to climate change. Econ Geogr 79(4):387–404

    Article  Google Scholar 

  • Alley RB, Marotzke J, Nordhaus WD et al (2003) Abrupt climate change. Science 299(5615):2005–2010

    Article  PubMed  CAS  Google Scholar 

  • Balmford A, Gaston KJ, Blyth S et al (2003) Global variation in terrestrial conservation costs, conservation benefits, and unmet conservation needs. Proc Natl Acad Sci USA 100(3):1046–1050

    Article  PubMed  CAS  Google Scholar 

  • Ban NC, Picard CR, Vincent ACJ (2009) Comparing and integrating community-based and science-based approaches to prioritizing marine areas for protection. Conserv Biol 23(4):899–910

    Article  PubMed  Google Scholar 

  • Barnett J, Adger WN (2007) Climate change, human security and violent conflict. Polit Geogr 26(6):639–655

    Article  Google Scholar 

  • Bartelink H (1998) Radiation interception by forest trees: a simulation study on effects of stand density and foliage clustering on absorption and transmission. Ecol Model 105(2–3):213–225

    Article  Google Scholar 

  • Basset Y, Aberlenc HP, Barrios H et al (2001) Stratification and diel activity of arthropods in a lowland rainforest in Gabon. Biol J Linn Soc 72(4):585–607

    Article  Google Scholar 

  • Begon M, Harper JL, Townsend CL (1996) Ecology: individuals, populations and communities, 3rd edn. Blackwell Science, Oxford

    Book  Google Scholar 

  • Biber D, Freudenberger L, Ibisch PL (2011) INSENSA-GIS: an open-source software tool for GIS data processing and statistical analysis. Beta Version (1.4.3). http://www.insensa.org. Accessed 10 May 2012

  • Bottrill MC, Joseph LN, Carwardine J et al (2008) Is conservation triage just smart decision making? Trends Ecol Evol 23(12):649–654

    Article  PubMed  Google Scholar 

  • Bourlière F, Harmelin-Vivien M (1989) Vertebrates in complex tropical systems. Springer, New York

    Google Scholar 

  • Bowman DMJS (1998) Death of biodiversity—the urgent need for global ecology. Glob Ecol Biogeogr 7(4):237–240

    Article  Google Scholar 

  • Brashares JS, Golden CD, Weinbaum KZ et al (2011) Biodiversity conservation and poverty traps Special feature: economic and geographic drivers of wildlife consumption in rural Africa. Proc Natl Acad Sci USA 108(34):13931–13936

    Article  PubMed  CAS  Google Scholar 

  • Brooks TM (2006) Global biodiversity conservation priorities. Science 313(5783):58–61

    Article  PubMed  CAS  Google Scholar 

  • Brühl CA, Gunsalam G, Linsenmair KE (1998) Stratification of ants (Hymenoptera, Formicidae) in a primary rain forest in Sabah, Borneo. J Trop Ecol 14(3):285–297

    Article  Google Scholar 

  • Bryant D, Nielsen D, Tangley L (1997) The last frontier forests. Ecosystems and economies on the edge. What is the status of the world’s remaining large, natural forest ecosystems?. World Resources Institute, Washington, DC

    Google Scholar 

  • Budreau D, McBean G (2007) Climate change, adaptive capacity and policy direction in the Canadian North: can we learn anything from the collapse of the east coast cod fishery? Mitig Adapt Strateg Glob Chang 12(7):1305–1320

    Article  Google Scholar 

  • CBD (2001) COP 5 decision V/6 ecosystem approach. In: Convention on biological diversity (CBD) (ed) Handbook of the convention on biological diversity. Earthscan Publications, London

    Google Scholar 

  • Chan KMA, Shaw MR, Cameron DR et al (2006) Conservation planning for ecosystem services. PLoS Biol 4(11):e379

    Article  PubMed  CAS  Google Scholar 

  • IPCC—Intergovernmental Panel on Climate Change (2007) Summary for policymakers. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 7–22

    Google Scholar 

  • Cramer W, Bondeau A, Woodward FI et al (2001) Global response of terrestrial ecosystem structure and function to CO2. Glob Chang Biol 7(4):357–373

    Article  Google Scholar 

  • Daily GC, Polasky S, Goldstein J et al (2009) Ecosystem services in decision making: time to deliver. Front Ecol Environ 7(1):21–28

    Article  Google Scholar 

  • Devitt C, Tol RS (2012) Civil war, climate change, and development: a scenario study for sub-Saharan Africa. J Peace Res 49(1):129–145

    Article  Google Scholar 

  • Diaz S, Cabido M (1997) Plant functional types and ecosystem function in relation to global change. J Veg Sci 8(4):463–474

    Article  Google Scholar 

  • Elmqvist T, Folke C, Nystrom M et al (2003) Response diversity, ecosystem change, and resilience. Front Ecol Environ 1(9):488–494

    Article  Google Scholar 

  • Emerson JW, Hsu A, Levy MA, de Sherbinin A, Mara V, Esty DC, Jaiteh M (2012) 2012 Environmental Performance Index and pilot trend environmental performance index. Yale Center for Environmental Law and Policy, New Haven

  • Entenmann S, Schmitt CB (2011) The role of biodiversity in climate change mitigation activities in Peru. In: Conference Proceedings of the Symposium of the British Ecological Society, pp 40–41

  • Esri (2008) Data & maps. Global digital elevation model (ETOPO30)

  • Esri (2009) ArcGIS version 9.3

  • Fermon H, Waltert M, Vane-Wright R et al (2005) Forest use and vertical stratification in fruit-feeding butterflies of Sulawesi, Indonesia: impacts for conservation. Biodivers Conserv 14(2):333–350

    Article  Google Scholar 

  • Fisher B, Turner RK, Morling P (2009) Defining and classifying ecosystem services for decision making. Ecol Econ 68(3):643–653

    Article  Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA et al (2011) Solutions for a cultivated planet. Nature 478(7369):337–342

    Article  PubMed  CAS  Google Scholar 

  • Freudenberger L, Schluck M, Hobson P et al. (2010a) Appendix (A–D) related to the section B.1.1. A view on global patterns and interlinkages of biodiversity and human development: In-depth presentation of material, methods and statistical results. In: Ibisch PL, Vega A, Herrmann TM (eds) Interdependence of biodiversity and development under global change. Technical Series No. 54, second corrected edition, Montreal, Canada, pp 197–224, http://www.cbd.int/doc/publications/cbd-ts-54-en.pdf. Accessed 21 Dec 2010

  • Freudenberger L, Schluck M, Hobson P et al. (2010b) B.1.1 A view on global patterns and interlinkages of biodiversity and human development. In: Ibisch PL, Vega A, Herrmann TM (eds) Interdependence of biodiversity and development under global change. Technical Series No. 54, second corrected edition, Montreal, Canada, pp 37–57, http://www.cbd.int/doc/publications/cbd-ts-54-en.pdf. Accessed 21 Dec 2010

  • Freudenberger L, Hobson PR, Schluck M, Ibisch PL (2012) A global map of the functionality of terrestrial ecosystems. Ecol Complex 12:13–22

    Article  Google Scholar 

  • Global Environment Facility (GEF) (2010) System for transparent allocation of resources (STAR), http://www.thegef.org/gef/sites/thegef.org/files/publication/GEF_STAR_A4_april11_CRA.pdf. Accessed 2 Nov 2012

  • Gonzalez P, Neilson RP, Lenihan JM et al (2010) Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Glob Ecol Biogeogr 19(6):755–768

    Article  Google Scholar 

  • Gumpenberger M, Vohland K, Heyder U et al (2010) Predicting pan-tropical climate change induced forest stock gains and losses—implications for REDD. Environ Res Lett 5(1):14013

    Article  Google Scholar 

  • Halpern BS, Pyke CR, Fox HE et al (2006) Gaps and mismatches between global conservation priorities and spending. Conserv Biol 20(1):56–64

    Article  PubMed  Google Scholar 

  • Hansell R, Bass B (1998) Holling’s figure-eight model: a technical reevaluation in relation to climate change and biodiversity. Environ Monit Asess 49(2/3):157–168

    Article  Google Scholar 

  • Hansen MR, DeFries JR, Townshend M et al (2003) Vegetation continuous fields MOD44B. 2001 percent tree cover. College Park, Maryland

    Google Scholar 

  • Hansen MC, Stehman SV, Potapov PV (2010) From the cover: quantification of global gross forest cover loss. Proc Natl Acad Sci USA 107(19):8650–8655

    Article  PubMed  CAS  Google Scholar 

  • Hanson T, Brooks TM, Da Fonseca GA et al (2009) Warfare in biodiversity hotspots. Conserv Biol 23(3):578–587

    Article  PubMed  Google Scholar 

  • Hawkins E, Sutton R (2011) The potential to narrow uncertainty in projections of regional precipitation change. Clim Dyn 37(1–2):407–418

    Article  Google Scholar 

  • Hoekstra JM, Boucher TM, Ricketts TH et al (2005) Confronting a biome crisis: global disparities of habitat loss and protection. Ecol Lett 8(1):23–29

    Article  Google Scholar 

  • Hurtt GC, Chini LP, Frolking S et al (2011) Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim Chang 109(1–2):117–161

    Article  Google Scholar 

  • Ibisch PL, Kreft S (2009) Natura 2000 und Klimawandel. In: Bundesverband Beruflicher Naturschutz e.V. (ed) Stimmt das Klima? Naturschutz im Umbruch, Bonn, pp 51–64

  • Ibisch PL, Hobson P, Vega A (2010) Mutual mainstreaming of biodiversity conservation and human development: towards a more radical ecosystem approach. In: Ibisch PL, Vega A, Herrmann TM (eds) Interdependence of biodiversity and development under global change. Technical Series No. 54, second corrected edition, Montreal, pp 15–34, http://www.cbd.int/doc/publications/cbd-ts-54-en.pdf

  • IMF—International Monetary Fund (2009) The World economic outlook database

  • Intachat J, Holloway JD (2000) Is there stratification in diversity or preferred flight height of geometroid moths in Malaysian lowland tropical forest? Biodivers Conserv 9(10):1417–1439

    Article  Google Scholar 

  • Isbell FI, Polley HW, Wilsey BJ (2009) Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecol Lett 12(5):443–451

    Article  PubMed  Google Scholar 

  • IUCN and UNEP (2009 (update 2010)) The World database on protected areas (WDPA, UNEP-WCMC, Cambridge

  • Jha S, Bawa KS (2006) Population growth, human development, and deforestation in biodiversity hotspots. Conserv Biol 20(3):906–912

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen SE (1990) Ecosystem theory, ecological buffer capacity, uncertainty and complexity. Ecol Model 52(1–2):125–133

    Article  Google Scholar 

  • Jørgensen SE (2006) Application of holistic thermodynamic indicators. Ecol Indic 6(1):24–29

    Article  Google Scholar 

  • Jørgensen SE (2008) Fundamental laws in ecology. In: Jørgensen SE, Fath B (eds) Encyclopedia of Ecology. Academic Press, Oxford, pp 1697–1701

    Chapter  Google Scholar 

  • Jørgensen SE (2010) Ecosystem services, sustainability and thermodynamic indicators. Ecol Complex 7(3):311–313

    Article  Google Scholar 

  • Kareiva P, Marvier M (2003) Conserving biodiversity coldspots: recent calls to direct conservation funding to the world’s biodiversity hotspots may be bad investment advise. Am Sci 91(4):344–351

    Google Scholar 

  • Kerr JT, Packer L (1997) Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature 385(6613):252–254

    Article  CAS  Google Scholar 

  • Kier G, Mutke J, Dinerstein E et al (2005) Global patterns of plant diversity and floristic knowledge. J Biogeogr 32(7):1107–1116

    Article  Google Scholar 

  • Kier G, Kreft H, Lee TM et al (2009) A global assessment of endemism and species richness across island and mainland regions. Proc Natl Acad Sci USA 106(23):9322–9327

    Article  PubMed  CAS  Google Scholar 

  • Last of the Wild (2005 (LWP-2)) Global human footprint data set (HF). Wildlife conservation (WCS) and center for international earth science information network (CIESIN), http://sedac.ciesin.columbia.edu/wildareas/. Accessed 12 April 2010

  • Lee TM, Jetz W (2008) Future battlegrounds for conservation under global change. P RoyY Soc B Biol Sci 275(1640):1261–1270

    Article  Google Scholar 

  • Lefsky MA (2010) A global forest canopy height map from the moderate resolution imaging spectroradiometer and the geoscience laser altimeter system. Geophys Res Lett 37(15):L15401

    Article  Google Scholar 

  • Li B (2000) Why is the holistic approach becoming so important in landscape ecology? Landsc Urban Plan 50(1–3):27–41

    Article  Google Scholar 

  • Lister NE (1998) A systems approach to biodiversity conservation planning. Environ Monit Asess 49(2/3):123–155

    Article  Google Scholar 

  • Lundberg J, Moberg F (2003) Mobile link organisms and ecosystem functioning: implications for ecosystem resilience and management. Ecosyst 6(1):87–98

    Article  Google Scholar 

  • Luyssaert S, Schulze E, Börner A et al (2008) Old-growth forests as global carbon sinks. Nature 455(7210):213–215

    Article  PubMed  CAS  Google Scholar 

  • Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405(6783):243–253

    Article  PubMed  CAS  Google Scholar 

  • Mawdsley JR, O’Malley R, Ojima DS (2009) A review of climate-change adaptation strategies for wildlife management and biodiversity conservation. Conserv Biol 23(5):1080–1089

    Article  PubMed  Google Scholar 

  • Mayers J, Batchelor C, Bond I et al. (2009) Water ecosystem services and poverty under climate change: key issues and research priorities. Natural Resource Issues No. 17. International Institute for Environment and Development, London

  • McBride MF, Wilson KA, Bode M et al (2007) Incorporating the effects of socioeconomic uncertainty into priority setting for conservation investment. Conserv Biol 21(6):1463–1474

    Article  PubMed  Google Scholar 

  • McClanahan T, Cinner J, Maina J et al (2008) Conservation action in a changing climate. Conserv Lett 1(2):53–59

    Article  Google Scholar 

  • McClanahan T, Cinner J, Graham N et al (2009) Identifying reefs of hope and hopeful actions: contextualizing environmental, ecological, and social parameters to respond effectively to climate change. Conserv Biol 23(3):662–671

    Article  PubMed  CAS  Google Scholar 

  • Miller JR, Snyder SA, Skibbe AM et al (2009) Prioritizing conservation targets in a rapidly urbanizing landscape. Landsc Urban Plan 93(2):123–131

    Article  Google Scholar 

  • Mittermeier RA, Myers N, Thomsen JB et al (1998) Biodiversity hotspots and major tropical wilderness areas: approaches to setting conservation priorities. Conserv Biol 12(3):516–520

    Article  Google Scholar 

  • Mooney H, Larigauderie A, Cesario M et al (2009) Biodiversity, climate change, and ecosystem services. Curr OpinEnviron Sustain 1(1):46–54

    Article  Google Scholar 

  • Müller F, Burkhard B, Kroll F (2010) Resilience, integrity and ecosystem dynamics: bridging ecosystem theory and management. In: Otto J, Dikau R (eds). Landform—structure, evolution, process control. Lecture Notes in Earth Sciences 115, Springer, pp 221–242

  • Murphy JM, Sexton DMH, Barnett DN et al (2004) Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430(7001):768–772

    Article  PubMed  CAS  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858

    Article  PubMed  CAS  Google Scholar 

  • Naidoo R, Iwamura T (2007) Global-scale mapping of economic benefits from agricultural lands: implications for conservation priorities. Biol Conserv 140(1–2):40–49

    Article  Google Scholar 

  • Naidoo R, Balmford A, Costanza R et al (2008) Global mapping of ecosystem services and conservation priorities. Proc Natl Acad Sci USA 105(28):9495–9500

    Article  PubMed  CAS  Google Scholar 

  • Norris C, Hobson P, Ibisch PL (2012) Microclimate and vegetation function as indicators of forest thermodynamic efficiency. J Appl Ecol 49(3):562–570

    Google Scholar 

  • Odum EP (1969) The strategy of ecosystem development—an understanding of ecological succession provides a basis for resolving man’s conflicts with nature. Science 164:262–270

    Article  PubMed  CAS  Google Scholar 

  • Oestreicher JS, Benessaiah K, Ruiz-Jaen MC et al (2009) Avoiding deforestation in Panamanian protected areas: an analysis of protection effectiveness and implications for reducing emissions from deforestation and forest degradation. Glob Environ Chang 19(2):279–291

    Article  Google Scholar 

  • Olson DM, Dinerstein E (2002) The global 200: priority ecoregions for global conservation. Ann Missouri Bot Gard 89:199–224

    Article  Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED et al (2001) Terrestrial ecoregions of the world: a new map of life on earth. Biosci 51(11):933

    Article  Google Scholar 

  • Peterson G, Allen CR, Holling CS (1998) Ecological resilience, biodiversity, and scale. Ecosyst 1(1):6–18

    Article  Google Scholar 

  • Polasky S (2008) Why conservation planning needs socioeconomic data. Proc Natl Acad Sci USA 105(18):6505–6506

    Article  PubMed  CAS  Google Scholar 

  • Rahbek C (2001) Multiscale assessment of patterns of avian species richness. Proc Natl Acad Sci USA 98(8):4534–4539

    Article  PubMed  CAS  Google Scholar 

  • Räisänen J (2001) CO2- induced climate change in CMIP2 experiments: quantification of agreement and role of internal variability. J Clim 14(9):2088–2104

    Article  Google Scholar 

  • Rands MRW, Adams WM, Bennun L et al (2010) Biodiversity conservation: challenges beyond 2010. Science 329(5997):1298–1303

    Article  PubMed  CAS  Google Scholar 

  • Reu B, Proulx R, Bohn K et al (2011) The role of climate and plant functional trade-offs in shaping global biome and biodiversity patterns. Glob Ecol Biogeogr 20(4):570–581

    Article  Google Scholar 

  • Reyers B, Roux DJ, Cowling RM et al (2010) Conservation planning as a transdisciplinary process. Conserv Biol 24(4):957–965

    Article  PubMed  Google Scholar 

  • Rockström J, Steffen W, Noone K et al (2009) Planetary boundaries: exploring the safe operating space for humanity. Ecol Soc 14(2):32

    Google Scholar 

  • Sachs JD, Baillie JEM, Sutherland WJ et al (2009) Biodiversity conservation and the millennium development goals. Science 325(5947):1502–1503

    Article  PubMed  CAS  Google Scholar 

  • Saisana M, Tarantola S (2002) State-of-the-art report on current methodologies and practices for composite indicator development, EUR 20408 EN Joint Research Centre European Commission. Institute for the Protection and Security of the Citizen Technological and Economic Risk Management, Ispra (VA)

    Google Scholar 

  • Sala OE, Chapin FS III, Armesto JJ et al (2000) Global biodiversity scenarios for the year 2100. Science 287(5459):1770–1774

    Article  PubMed  CAS  Google Scholar 

  • Sanderson EW, Jaiteh M, Levy MA et al (2002) The human footprint and the last of the wild. Biosci 52(10):891–904

    Article  Google Scholar 

  • Scheffer M, Carpenter SR (2003) Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol Evol 18(12):648–656

    Article  Google Scholar 

  • Scheffer M, Carpenter S, Foley JA et al (2001) Catastrophic shifts in ecosystems. Nature 413(6856):591–596

    Article  PubMed  CAS  Google Scholar 

  • Scheffer M, Bascompte J, Brock WA et al (2009) Early-warning signals for critical transitions. Nature 461(7260):53–59

    Article  PubMed  CAS  Google Scholar 

  • Schmitt CB (2011) A tough choice—approaches towards the setting of global conservation priorities. In: Zachos FE, Habel JC (eds) Biodiversity hotspots—distribution and protection of conservation priority areas. Springer, Berlin, pp 23–42

    Google Scholar 

  • Schneider E, Kay JJ (1994) Complexity and thermodynamics Towards a new ecology. Futures 26(6):626–647

    Article  Google Scholar 

  • Scholze M, Knorr W, Arnell NW et al (2006) A climate-change risk analysis for world ecosystems. Proc Natl Acad Sci USA 103(35):13116–13120

    Article  PubMed  CAS  Google Scholar 

  • Schröter D (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310(5752):1333–1337

    Article  PubMed  CAS  Google Scholar 

  • Selva N, Kreft S, Kati V et al (2011) Roadless and low-traffic areas as conservation targets in Europe. Environ Manag 48(5):865–877

    Article  Google Scholar 

  • Smith RJ, Walpole MJ (2005) Should conservationists pay more attention to corruption? Oryx 39(3):251–256

    Article  Google Scholar 

  • Spies TA (1998) Forest structure: a key to the ecosystem. Northwest Sci 72:34–39

    Google Scholar 

  • Strange N, Thorsen BJ, Bladt J et al (2011) Conservation policies and planning under climate change. Biol Conserv 144(12):2968–2977

    Article  Google Scholar 

  • Sutton PC, Costanza R (2002) Global estimates of market and non-market values derived from nighttime satellite imagery, land cover, and ecosystem service valuation. Ecol Econ 41(3):509–527

    Article  Google Scholar 

  • Sutton SL, Ash CP, Grundy A (1983) The vertical distribution of flying insects in lowland rain-forests of Panama, Papua-New-Guinea and Brunei. Zool J Linn Soc 78(3):287–297

    Article  Google Scholar 

  • Tang Z, Zhao N (2011) Assessing the principles of community-based natural resources management in local environmental conservation plans. J Environ Asses Policy Manag 13(03):405

    Article  Google Scholar 

  • The Fund for Peace (2011) Failed states index 2011. http://www.fundforpeace.org/global/?q=fsi2011. Accessed 8 May 2012

  • Thomas CD, Cameron A, Green RE et al (2004) Extinction risk from climate change. Nature 427(6970):145–148

    Article  PubMed  CAS  Google Scholar 

  • Trumper K, Bertzky M, Dickson B et al (2009) The natural fix? The role of ecosystems in climate mitigation. A UNEP rapid response assessment. United Nations Environment Programme, UNEP-WCMC, Cambridge

    Google Scholar 

  • Turner WR, Brandon K, Brooks TM et al (2007) Global conservation of biodiversity and ecosystem services. Biosci 57:868–873

    Article  Google Scholar 

  • UN—United Nations Department of Economic and Social Affairs Population Division (2011) World population prospects: the 2010 revision Last Update 2011

  • van der Werf GR, Morton DC, DeFries RS et al (2009) CO2 emissions from forest loss. Nature Geosci 2(11):737–738

    Article  CAS  Google Scholar 

  • Verboom J, Alkemade R, Klijn J et al (2007) Combining biodiversity modeling with political and economic development scenarios for 25 EU countries. Ecol Econ 62(2):267–276

    Article  Google Scholar 

  • Vohland K, Hickler T, Feehan J et al. (2010) Priority setting for nature conservation. In: Settele J, Penev L, Georgiev T et al. (eds) Atlas of biodiversity risk. Pensoft Pub, Sofia, Bulgaria, pp 234–237, xv, 264

  • Vörösmarty CJ, Green P, Salisbury J et al (2000) Global water resources: vulnerability from climate change and population growth. Science 289(5477):284–288

    Article  PubMed  Google Scholar 

  • Vörösmarty CJ, McIntyre PB, Gessner MO et al (2010) Global threats to human water security and river biodiversity. Nature 467(7315):555–561

    Article  PubMed  CAS  Google Scholar 

  • Walker BH (1992) Biodiversity and ecological redundancy. Conserv Biol 6(1):18–23

    Article  Google Scholar 

  • Wolda H (1987) Altitude, habitat and tropical diversity. Biol J Linn Soc 30(4):313–323

    Article  Google Scholar 

  • Woodwell GM (2002) On purpose in science, conservation and government. Ambio 31(5):432–436

    PubMed  Google Scholar 

  • Zenner E (2004) Does old-growth condition imply high live-tree structural complexity? For Ecol Manag 195(1–2):243–258

    Article  Google Scholar 

  • Zhang J, Gurkan Z, Jørgensen SE (2010) Application of eco-exergy for assessment of ecosystem health and development of structurally dynamic models. Ecol Model 221(4):693–702

    Article  Google Scholar 

Download references

Acknowledgments

This research project is supported by the Ministry of Science, Research and Culture of Brandenburg through funds of the Europäischen Sozialfonds and the Land Brandenburg. This project is also funded by the Academy of Sciences and Literature Mainz, Germany (“Biodiversity in Change” Program). It was carried out within the framework of a) the cooperative graduate research program “Adaptive Nature Conservation under Climate Change” of Potsdam University, the University for Sustainable Development Eberswalde and the Potsdam Institute for Climate Impact Research, Germany and b) the early stage researchers group “Regional Adaptation to Climate Change—Ecosystem Services and Biodiversity”. We thank the anonymous reviewers for valuable suggestions as well as Wolfgang Cramer, Gerold Kier, Jens Mutke, Monika Bertzky and Juliane Geyer for comments on drafts of this paper. We would also like to thank Björn Reu of the Max-Planck-Institute for Biogeochemistry in Jena (Germany), Michael Lefsky of the Department of Forest, Rangeland and Watershed Stewardship of the University of Colorado (USA), Patrick Gonzalez of the National Park Service in Washington (USA), Robin Naidoo, WWF, Washington (USA) for the provision of data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Freudenberger.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freudenberger, L., Hobson, P., Schluck, M. et al. Nature conservation: priority-setting needs a global change. Biodivers Conserv 22, 1255–1281 (2013). https://doi.org/10.1007/s10531-012-0428-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-012-0428-6

Keywords

Navigation