Skip to main content

Advertisement

Log in

Using higher taxa as surrogates of species-level data in three Portuguese protected areas: a case study on Spheciformes (Hymenoptera)

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Protected areas are the focus of most conservation efforts worldwide. Despite vast amount of investment in protected areas, biodiversity loss continues. This has led to increasing efforts to develop measures to assess the effectiveness of protected areas. The reliability of these measures depends on the quality of the information collected. However, because the resources available for the collection of information are limited, several strategies have been developed to reduce the resources necessary. In this study the combination of two resource reduction approaches—bioindicator and higher-taxa—is proposed. Spheciformes have been found to be useful as biodiversity, ecological and environmental indicators. Identification to the species level is usually very costly, but the use of genus-level information has been suggested. Tribe- and genus-level data for Spheciformes were assessed for their ability to predict the number of species independently of other variables—sampling area, geographic location, vegetation type, disturbance regime, and sampling effort—at three Portuguese protected areas. Tribe and genus-level data were found to be good indicators, with genus being the more reliable taxonomic level. Sampling effort was the only external variable that affected the relationship between species and higher-taxa richness. Genus-level data were also found to be useful for ranking sites according to richness or composition, and for determining richness-based and rarity-based complementary sets of sites for conservation. Using genus richness as a surrogate for species richness seems a promising approach for monitoring and contributing to the establishment of protected areas in Portugal and the entire Mediterranean region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andersen AN (1995) Measuring more of biodiversity: genus richness as a surrogate for species richness in Australian ant faunas. Biol Conserv 73:39–43. doi:10.1016/0006-3207(95)90059-4

    Article  Google Scholar 

  • Anderson A, McCormack S, Helden A, Sheridan H, Kinsella A, Purvis G (2011) The potential of parasitoid Hymenoptera as bioindicators of arthropod diversity in agricultural grasslands. J Appl Ecol 48:382–390. doi:10.1111/j.1365-2664.2010.01937.x

    Article  Google Scholar 

  • Anonymous (2001a) Turismo de natureza. Enquadramento estratégico. Parque Natural das Serras de Aires e Candeeiros. 2000–2006. Instituto da Conservação da Natureza (ICN), Lisboa

  • Anonymous (2001b) Turismo de natureza. Enquadramento estratégico. Parque Natural do Douro Internacional. 2000–2006. Instituto da Conservação da Natureza (ICN), Lisboa

  • Anonymous (2001c) Turismo de natureza. Enquadramento estratégico. Reserva Natural do Paul do Boquilobo. 2000–2006. Instituto da Conservação da Natureza (ICN), Lisboa

  • Báldi A (2003) Using higher taxa as surrogates of species richness: a study based on 3700 Coleoptera, Diptera, and Acari species in Central-Hungarian reserves. Basic Appl Ecol 4:589–593. doi:10.1078/1439-1791-00193

    Article  Google Scholar 

  • Balmford A, Green MJB, Murray MG (1996a) Using higher-taxon richness as a surrogate for species richness: I. Regional tests. Proc Biol Sci 263:1267–1274

    Article  Google Scholar 

  • Balmford A, Jayasuriya AHM, Green MJB (1996b) Using higher-taxon richness as a surrogate for species richness: II. Local applications. Proc R Soc Lond B Biol Sci 263:1571–1575. doi:10.1098/rspb.1996.0230

    Article  Google Scholar 

  • Balmford A, Lyon AJE, Lang RM (2000) Testing the higher-taxon approach to conservation planning in a megadiverse group: the macrofungi. Biol Conserv 93:209–217. doi:10.1016/s0006-3207(99)00140-8

    Article  Google Scholar 

  • Bitsch J, Leclercq J (1993) Hyménoptères Sphecidae d’Europe occidentale, vol 1. Faune de France 79. Fédération Française Des Sociétés De Sciences Naturelles, Paris

    Google Scholar 

  • Bitsch J, Barbier Y, Gayubo SF, Schmidt K, Ohl M (1997) Hyménoptères Sphecidae d’Europe occidentale, vol 2. Faune de France 82. Fédération Française Des Sociétés De Sciences Naturelles, Paris

    Google Scholar 

  • Bitsch J, Dollfuss H, Boucek Z, Schmidt K, Schmidt-Egger C, Gayubo SF, Antropov AV, Barbier Y (2001) Hyménoptères Sphecidae d’Europe occidentale, vol 3. Faune de France 86. Fédération Française Des Sociétés De Sciences Naturelles, Paris

    Google Scholar 

  • Bonin A, Nicole F, Pompanon F, Miaud C, Taberlet P (2007) Population adaptive index: a new method to help measure intraspecific genetic diversity and prioritize populations for conservation. Conserv Biol 21:697–708. doi:10.1111/j.1523-1739.2007.00685.x

    Article  PubMed  Google Scholar 

  • Brennan KEC, Ashby L, Majer JD, Moir ML, Koch JM (2006) Simplifying assessment of forest management practices for invertebrates: how effective are higher taxon and habitat surrogates for spiders following prescribed burning? For Ecol Manage 231:138–154. doi:10.1016/j.foreco.2006.05.035

    Article  Google Scholar 

  • Brothers DJ (1999) Phylogeny and evolution of wasps, ants and bees (Hymenoptera, Chrysidoidea, Vespoidea and Apoidea). Zoolog Scr 28:233–250. doi:10.1046/j.1463-6409.1999.00003.x

    Article  Google Scholar 

  • Campos WG, Pereira DBS, Schoereder JH (2000) Comparison of the efficiency of flight-interception trap models for sampling Hymenoptera and other insects. Anais da Sociedade Entomológica do Brasil 29:381–389

    Article  Google Scholar 

  • Cardoso P, Silva I, de Oliveira NG, Serrano ARM (2004) Higher taxa surrogates of spider (Araneae) diversity and their efficiency in conservation. Biol Conserv 117:453–459. doi:10.1016/j.biocon.2003.08.013

    Article  Google Scholar 

  • Carey C, Dudley N, Stolton S (2000) Squandering paradise? The importance and vulnerability of the world’s protected areas. WWF-World Wide Fund For Nature (Formerly World Wildlife Fund) International, Gland

    Google Scholar 

  • Cruz-Sánchez M, Asís J, Gayubo S, Tormos J, González J (2011) The effects of wildfire on Spheciformes wasp community structure: the importance of local habitat conditions. J Insect Conserv 15:487–503. doi:10.1007/s10841-010-9322-2

    Article  Google Scholar 

  • D’Amen M, Zimmermann NE, Pearman PB (2012) Conservation of phylogeographic lineages under climate change. Glob Ecol Biogeogr. doi:10.1111/j.1466-8238.2012.00774.x

    Google Scholar 

  • Dauber J, Hirsch M, Simmering D, Waldhardt R, Otte A, Wolters V (2003) Landscape structure as an indicator of biodiversity: matrix effects on species richness. Agric Ecosyst Environ 98:321–329. doi:10.1016/s0167-8809(03)00092-6

    Article  Google Scholar 

  • Derraik JGB, Early JW, Closs GP, Dickinson KJM (2010) Morphospecies and taxonomic species comparison for Hymenoptera. J Insect Sci 10:108

    Article  PubMed  Google Scholar 

  • Ekschmitt K, Stierhof T, Dauber J, Kreimes K, Wolters V (2003) On the quality of soil biodiversity indicators: abiotic and biotic parameters as predictors of soil faunal richness at different spatial scales. Agric Ecosyst Environ 98:273–283. doi:10.1016/s0167-8809(03)00087-2

    Article  Google Scholar 

  • Feld C, Sousa J, da Silva P, Dawson T (2010) Indicators for biodiversity and ecosystem services: towards an improved framework for ecosystems assessment. Biodivers Conserv 19:2895–2919. doi:10.1007/s10531-010-9875-0

    Article  Google Scholar 

  • Fjeldså J (2000) The relevance of systematics in choosing priority areas for global conservation. Environ Conserv 27:67–75

    Article  Google Scholar 

  • Gaston KJ (2000) Biodiversity: higher taxon richness. Prog Phys Geogr 24:117–127

    Google Scholar 

  • Gaston KJ, Blackburn TM (1995) Mapping biodiversity using surrogates for species richness: macro-scales and new World birds. Proc Biol Sci 262:335–341

    Article  Google Scholar 

  • Gaston KJ, Williams PH (1993) Mapping the world’s species-the higher taxon approach. Biodivers Lett 1:2–8

    Article  Google Scholar 

  • Gaston KJ, Williams PH, Eggleton P, Humphries CJ (1995) Large scale patterns of biodiversity: spatial variation in family richness. Proc Biol Sci 260:149–154

    Article  Google Scholar 

  • Gayubo SF, González JA, Asís J, Tormos F (2005) Conservation of European environments: the Spheciformes wasps as biodiversity indicators (Hymenoptera: Apoidea: Ampulicidae, Sphecidae and Cabronidae). J Nat Hist 39:2705–2714

    Article  Google Scholar 

  • González JA, Gayubo SF, Asís JD, Tormos J (2009) Diversity and biogeographical significance of solitary wasps (Chrysididae, Eumeninae, and Spheciformes) at the Arribes del Duero Natural Park, Spain: their importance for insect diversity conservation in the Mediterranean region. Environ Entomol 38:608–626

    Article  PubMed  Google Scholar 

  • Grelle CEV (2002) Is higher-taxon analysis an useful surrogate of species richness in studies of Neotropical mammal diversity? Biol Conserv 108:101–106

    Article  Google Scholar 

  • Hammond PM (1994) Practical approaches to the estimation of the extent of biodiversity in speciose groups. Philos Trans R Soc Lond B Biol Sci 345:119–136

    Article  Google Scholar 

  • Heino J, Soininen J (2007) Are higher taxa adequate surrogates for species-level assemblage patterns and species richness in stream organisms? Biol Conserv 137:78–89. doi:10.1016/j.biocon.2007.01.017

    Article  Google Scholar 

  • Hodkinson ID, Jackson JK (2005) Terrestrial and aquatic invertebrates as bioindicators for environmental monitoring, with particular reference to mountain ecosystems. Environ Manage 35:649–666. doi:10.1007/s00267-004-0211-x

    Article  PubMed  Google Scholar 

  • Humphries CJ, Williams PH, Vane-Wright RI (1995) Measuring biodiversity value for conservation. Annu Rev Ecol Syst 26:93–111

    Article  Google Scholar 

  • Larsen FW, Rahbek C (2005) The influence of spatial grain size on the suitability of the higher-taxon approach in continental priority-setting. Anim Conserv 8:389–396. doi:10.1017/s1367943005002362

    Article  Google Scholar 

  • Lovell S, Hamer M, Slotow R, Herbert D (2007) Assessment of congruency across invertebrate taxa and taxonomic levels to identify potential surrogates. Biol Conserv 139:113–125. doi:10.1016/j.biocon.2007.06.008

    Article  Google Scholar 

  • Mandelik Y, Dayan T, Chikatunov V, Kravchenko V (2007) Reliability of a higher-taxon approach to richness, rarity, and composition assessments at the local scale. Conserv Biol 21:1506–1515. doi:10.1111/j.1523-1739.2007.00823.x

    Article  PubMed  Google Scholar 

  • Mandelik Y, Roll U, Fleischer A (2010) Cost-efficiency of biodiversity indicators for Mediterranean ecosystems and the effects of socio-economic factors. J Appl Ecol 47:1179–1188. doi:10.1111/j.1365-2664.2010.01864.x

    Article  Google Scholar 

  • Masner L, Goulet H (1981) A new model of flight-interception trap for some Hymenopterous insects. Entomol News 92:199–202

    Google Scholar 

  • Mazaris AD, Kallimanis AS, Sgardelis SP, Pantis JD (2008) Does higher taxon diversity reflect richness of conservation interest species?: the case for birds, mammals, amphibians, and reptiles in Greek protected areas. Ecol Ind 8:664–671. doi:10.1016/j.ecolind.2007.11.001

    Article  Google Scholar 

  • Mazaris AD, Kallimanis AS, Tzanopoulos J, Sgardelis SP, Pantis JD (2010) Can we predict the number of plant species from the richness of a few common genera, families or orders? J Appl Ecol 47:662–670

    Article  Google Scholar 

  • McGeoch MA (2007) Insects and bioindication: theory and progress. In: Stewart AJA, New TR, Lewis OT (eds) Insect conservation biology: the 22nd symposium of the royal entomological society. CABI, Oxfordshire, UK, pp 144–174

  • Melo GAR (1999) Phylogenetic relationships and classification of the major lineages of Apoidea (Hymenoptera) with emphasis on the crabronid wasps. Natural History Museum; The University of Kansas, Lawrence

    Book  Google Scholar 

  • Mezquida JAA, De Fernández JVL, Yangüas MAM (2005) A framework for designing ecological monitoring programs for protected areas: a case study of the Galachos del Ebro Nature Reserve (Spain). Environ Manage 35:20–33

    Article  Google Scholar 

  • Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B (2011) How many species are there on earth and in the ocean? PLoS Biol 9:e1001127. doi:10.1371/journal.pbio.1001127

    Article  PubMed  CAS  Google Scholar 

  • Naughton-Treves L, Holland MB, Brandon K (2005) The role of protected areas in conserving biodiversity and sustaining local livelihoods. Annu Rev Environ Res 30:219–252. doi:10.1146/annurev.energy.30.050504.164507

    Article  Google Scholar 

  • Noyes J (1989) A study of five methods of sampling Hymenoptera (Insecta) in a tropical rainforest, with special reference to the Parasitica. J Nat Hist 23:285–298. doi:10.1080/00222938900770181

    Article  Google Scholar 

  • Oliver I, Beattie AJ (1996) Invertebrate morphospecies as surrogates for species: a case study. Conserv Biol 10:99–109

    Article  Google Scholar 

  • Ottonetti L, Tucci L, Santini G (2006) Recolonization patterns of ants in a rehabilitated lignite mine in central Italy: potential for the use of Mediterranean ants as indicators of restoration processes. Restor Ecol 14:60–66

    Article  Google Scholar 

  • Parrish JD, Braun DP, Unnasch RS (2003) Are we conserving what we say we are? Measuring ecological integrity within protected areas. Bioscience 53:851–860. doi:10.1641/0006-3568(2003)053[0851:awcwws]2.0.co;2

    Article  Google Scholar 

  • Pearce JL, Venier LA (2006) The use of ground beetles (Coleoptera: Carabidae) and spiders (Araneae) as bioindicators of sustainable forest management: a review. Ecol Ind 6:780–793. doi:10.1016/j.ecolind.2005.03.005

    Article  Google Scholar 

  • Pearson D, Cassola F (2007) Are we doomed to repeat history? A model of the past using tiger beetles (Coleoptera: Cicindelidae) and conservation biology to anticipate the future. J Insect Conserv 11:47–59. doi:10.1007/s10841-006-9018-9

    Article  Google Scholar 

  • Prance GT (1994) A comparison of the efficacy of higher taxa and species numbers in the assessment of biodiversity in the neotropics. Philos Trans R Soc Lond B Biol Sci 345:89–99. doi:10.1098/rstb.1994.0090

    Article  Google Scholar 

  • Prentice MA (1998) The comparative morphology and phylogeny of the apoid wasps (Hymenoptera: Apoidea). Ph.D. Thesis, University of California, Berkeley, p 1439

  • Prinzing A, Klotz S, Stadler J, Brandl R (2003) Woody plants in Kenya: expanding the higher-taxon approach. Biol Conserv 110:307–314. doi:10.1016/s0006-3207(02)00242-2

    Article  Google Scholar 

  • Rosser N, Eggleton P (2011) Can higher taxa be used as a surrogate for species-level data in biodiversity surveys of litter/soil insects? J Insect Conserv 16(1):1–6. doi:10.1007/s10841-011-9395-6

    Google Scholar 

  • Samu F, Lovel GL (1995) Species richness of a spider community (Araneae): extrapolation from simulated increasing sampling effort. Eur J Entomol 92:633–638

    Google Scholar 

  • SAS Institute Inc. (2008) Chapter 32: The DISTANCE procedure: SAS/STAT® 9.2 user’s guide. SAS Institute Inc., Cary

    Google Scholar 

  • SAS Institute Inc. (2009) JMP® 8 user guide, 2nd edn. SAS Institute Inc., Cary

    Google Scholar 

  • Shokri MR, Gladstone W (2009) Higher taxa are effective surrogates for species in the selection of conservation reserves in estuaries. Aquat Conserv Mar Freshw Ecosyst 19:626–636

    Article  Google Scholar 

  • Spanos KA, Feest A (2007) A review of the assessment of biodiversity in forest ecosystems. Manage Environ Qual Int J 18:475–486

    Article  Google Scholar 

  • Townes H (1972) A light-weight Malaise trap. Entomol News 83:239–247

    Google Scholar 

  • Vanderklift MA, Ward TJ, Phillips JC (1998) Use of assemblages derived from different taxonomic levels to select areas for conserving marine biodiversity. Biol Conserv 86:307–315. doi:10.1016/s0006-3207(98)00036-6

    Article  Google Scholar 

  • Vieira L, Oliveira N, Gayubo S (2011) On the use of Apiformes and Spheciformes (Insecta: Hymenoptera) populations as a management tool. Biodivers Conserv 20:519–530. doi:10.1007/s10531-010-9962-2

    Article  Google Scholar 

  • Villaseñor JL, Ibarra-Manríquez G, Meave JA, Ortíz E (2005) Higher taxa as surrogates of plant biodiversity in a megadiverse country. Conserv Biol 19:232–238. doi:10.1111/j.1523-1739.2005.00264.x

    Article  Google Scholar 

  • Williams P (2000) Complementarity. In: Levin SA (ed) Encyclopedia of biodiversity, vol 5. Academic Press, San Diego, pp 813–829

  • Williams PH, Gaston KJ (1994) Measuring more of biodiversity: can higher-taxon richness predict wholesale species richness? Biol Conserv 67:211–217. doi:10.1016/0006-3207(94)90612-2

    Article  Google Scholar 

  • Williams PH, Humphries CJ, Gaston KJ (1994) Centres of seed-plant diversity: the family way. Proc R Soc Lond B Biol Sci 256:67–70. doi:10.1098/rspb.1994.0050

    Article  Google Scholar 

  • Williams P, Gibbons D, Margules C, Rebelo A, Humphries C, Pressey R (1996) A comparison of richness hotspots, rarity hotspots, and complementary areas for conserving diversity of British birds. Conserv Biol 10:155–174

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Douro Internacional Natural Park, Serras de Aire e Candeeiros Natural Park and Paúl do Boquilobo Nature Reserve for providing assistance during fieldwork studies. We also thank Dr. Pedro Cardoso, Dr. Israel Faria Silva and Dr. Artur Serrano, from Faculty of Sciences, University of Lisbon, for participating in the field and lab work during the first phase of this project. Funding was provided to Nuno Gaspar de Oliveira by the Foundation for Science and Technology scholarship SFRH/BD/1196/2000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. C. Vieira.

Appendix

Appendix

See Table 2.

Table 2 List of sampling sites with site name and code, protected area where they are situated, altitude (in meters), UTM coordinates, habitat description with indication of dominant vegetation and hydrological information (when relevant), geographic location, vegetation type, disturbance regime, and sampling effort

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vieira, L.C., Oliveira, N.G., Brewster, C.C. et al. Using higher taxa as surrogates of species-level data in three Portuguese protected areas: a case study on Spheciformes (Hymenoptera). Biodivers Conserv 21, 3467–3486 (2012). https://doi.org/10.1007/s10531-012-0374-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-012-0374-3

Keywords

Navigation