Skip to main content

Advertisement

Log in

Designing criteria suites to identify discrete and networked sites of high value across manifestations of biodiversity

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Suites of criteria specifying ecological, biological, social, economic, and governance properties enable the systematic identification of sites and networks of high biodiversity value, and can support balancing ecological and socioeconomic objectives of biodiversity conservation in terrestrial and marine spatial planning. We describe designs of suites of ecological, governance and socioeconomic criteria to comprehensively cover manifestations of biodiversity, from genotypes to biomes; compensate for taxonomic and spatial gaps in available datasets; balance biases resulting from conventionally-employed narrow criteria suites focusing on rare, endemic and threatened species; plan for climate change effects on biodiversity; and optimize the ecological and administrative networking of sites. Representativeness, replication, ecological connectivity, size, and refugia are identified as minimum ecological properties of site networks. Through inclusion of a criterion for phylogenetic distinctiveness, criteria suites identify sites important for maintaining evolutionary processes. Criteria for focal species are needed to overcome data gaps and address limitations in knowledge of factors responsible for maintaining ecosystem integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen W, Peter B, Bitner R et al (1997) The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conserv Biol 12:8–17

    Google Scholar 

  • Alliance for Zero Extinction (2005) Pinpointing and preventing imminent extinctions. American Bird Conservancy, Washington

    Google Scholar 

  • Anagnostakis S (1987) Chestnut blight: the classical problem of an introduced pathogen. Mycologia 79(1):23–37

    Google Scholar 

  • Anagnostakis S (2001) The effect of multiple importations of pests and pathogens on a native tree. Biol Invasions 3:245–254

    Google Scholar 

  • Andelman S, Bowles C, Willig M, Waide R (2004) Understanding environmental complexity through a distributed knowledge network. Bioscience 54(3):240–246

    Google Scholar 

  • Arico S, Salpin C (2005) Bioprospecting of genetic resources in the deep seabed: scientific legal and policy aspects. United Nations University, Institute of Advanced Studies, Yokohama

    Google Scholar 

  • ASEAN Center for Biodiversity (2010) 3rd ASEAN Heritage Parks conference. ASEAN Heritage Parks. Moving forward towards effectively managed AHPs. ACB, Laguna

  • Balmford A, Bruner A, Cooper P et al (2002) Economic reasons for conserving wild nature. Science 297:950–953

    PubMed  CAS  Google Scholar 

  • Balmford A, Green R, Jenkins M (2003) Measuring the changing state of nature. Trends Ecol Evol 18:326–330

    Google Scholar 

  • Balmford A, Crane P, Dobson A, Green R, Mace G (2005) The 2010 challenge: data availability, information needs and extraterrestrial insights. Philos Trans R Soc Lond B Biol Sci 360:221–228

    PubMed  Google Scholar 

  • Bani L, Massimino D, Bottoni L, Massa R (2006) A multiscale method for selecting indicator species and priority conservation areas: a case study for broadleaved forests in Lombardy, Italy. Conserv Biol 20(2):512–526

    PubMed  Google Scholar 

  • Barber C, Miller K, Boness M (eds) (2004) Securing protected areas in the face of global change: issues and strategies. IUCN, Gland

    Google Scholar 

  • BirdLife International (2010) Sites—important bird areas (IBAs). BirdLife International, Cambridge. http://www.birdlife.org/datazone/info/ibacriteria. Accessed 15 Jan 2011

  • Bisby F, Roskov Y, Orrell T, Nicolson D, Paglinawan L, Bailly N, Kirk P, Bourgoin T, Baillargeon G (eds) (2009) Species 2000 & ITIS catalogue of Life: 2009 annual checklist. Species 2000, Reading. www.catalogueoflife.org/annual-checklist/2009/. Accessed 15 April 2009

  • Bjorndal K, Jackson J (2003) Roles of sea turtles in marine ecosystems: reconstructing the past. In: Lutz P, Musick J, Wyneken J (eds) The biology of sea turtles, vol II. CRC Press, Boca Raton, pp 259–273

    Google Scholar 

  • Brown J (1984) On the relationship between abundance and distribution of species. Am Nat 124:255–279

    Google Scholar 

  • Cabeza M, Moilanen A (2001) Design of reserve networks and the persistence of biodiversity. Trends Ecol Evol 16:242–248

    PubMed  Google Scholar 

  • CABI Biosciences (2009) Index fungorum. http://www.indexfungorum.org/. Accessed 15 April 2009

  • Caro T, O’Doherty G (1999) On the use of surrogate species in conservation biology. Conserv Biol 13:805–814

    Google Scholar 

  • Carpenter S, Walker B, Anderies J, Abel N (2001) From metaphor to measurement: resilience of what to what? Ecosystems 4:765–781

    Google Scholar 

  • CBD (2008) IX/20 marine and coastal biodiversity. Decision adopted by the conference of the parties to the convention on biological diversity at its ninth meeting, Bonn, 19–30 May 2008. Annex I. Scientific criteria for identifying ecologically or biologically significant marine areas in need of protection in open-ocean waters and deep-sea habitats. UNEP/CBD/COP/DEC/IX/20. Convention on Biological Diversity Secretariat, Montreal

  • CBD (2010) Global biodiversity outlook 3. Secretariat of the Convention on Biological Diversity, Montreal

    Google Scholar 

  • Chapin F III, Sala O, Burke I et al (1998) Ecosystem consequences of changing biodiversity: experimental evidence and a research agenda for the future. Bioscience 48(1):45–52

    Google Scholar 

  • Chapman A (ed) (2009) Numbers of living species in Australia and the world, 2nd edn. Commonwealth of Australia, Canberra

    Google Scholar 

  • Collen B, Rist J (2008) Streamlining European 2010 biodiversity indicators (SEBI 2010): developing a methodology for using bats as indicator species and testing the usability of GBIF data for use in 2010 biodiversity indicators. EEA/BSS/07/008. European Environment Agency, Copenhagen

    Google Scholar 

  • Convention on Migratory Species (2007) Western/central asian site network for the Siberian crane and other waterbirds. guidelines to prepare site nomination documentation. Convention on Migratory Species Secretariat, Bonn

    Google Scholar 

  • Costello M (2009) Motivating online publication of data. Bioscience 59:418–427

    Google Scholar 

  • Crouse D (1999) The consequences of delayed maturity in a human-dominated world. In: Musick J (ed) Life in the slow lane. Ecology and conservation of long-lived marine animals. American Fisheries Society, Bethesda, pp 195–202

    Google Scholar 

  • Crowder L, Norse E (2008) Essential ecological insights for marine ecosystem-based management and marine spatial planning. Mar Policy 32:772–778

    Google Scholar 

  • Crowder L, Lyman S, Figueira W, Priddy J (2000) Source-sink population dynamics and the problem of siting marine reserves. Bull Mar Sci 66(3):22

    Google Scholar 

  • Darwall W, Vie J (2005) Identifying important sites for conservation of freshwater biodiversity: extending the species-based approach. Fish Manage Ecol 12:287–293

    Google Scholar 

  • Diaz S, Fargione J, Chapin F III, Tilman D (2006) Biodiversity loss threatens human well-being. PLoS Biol 4:e277

    PubMed  Google Scholar 

  • Diniz J (2004) Phylogenetic diversity and conservation priorities under distinct models of phenotypic evolution. Conserv Biol 18:698–704

    Google Scholar 

  • Dobson A, Lodge D, Alder J et al (2006) Habitat loss, trophic collapse, and the decline of ecosystem services. Ecology 87:1915–1924

    PubMed  Google Scholar 

  • Edwards M, Beaugrand G, Hays G, Koslow A, Richardson A (2010) Multi-decadal oceanic ecological datasets and their application in marine policy and management. Trends Ecol Evol 1278:1–9. doi:10.1016/j.tree.2010.07.007

    Google Scholar 

  • Estes J, Tinker M, Williams T, Doak D (1998) Killer whale predation on sea otters linking oceanic and nearshore ecosystems. Science 282:473–476

    PubMed  CAS  Google Scholar 

  • Estrada E (2007) Characterisation of topological keystone species: local, global and “meso-scale” centralities in food webs. Ecol Complex 4:48–57

    Google Scholar 

  • European Communities (2008) The economics of ecosystems and biodiversity. An interim report. Welzel Hardt, Wesseling. ISBN-13 978–92-79–08960-2

  • European Environment Agency (2006) Progress towards halting the loss of biodiversity by 2010. EEA Report No. 5/2006. European Environment Agency, Copenhagen. ISBN 92-9167-846-5

  • Faith D (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10

    Google Scholar 

  • FAO (2008) A Contribution to the international initiative for the conservation and sustainable use of pollinators. Rapid assessment of pollinators’ status. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Fiorella K, Cameron A, Sechrest W, Winfree R, Kremen C (2010) Methodological considerations in reserve system selection: a case study of Malagasy lemurs. Biol Conserv 143:963–973

    Google Scholar 

  • Gallai N, Salles J, Settele J, Vaissiere B (2009) Economic valuation of the vulnerability of world agriculture confronted to pollinator decline. Ecol Econ 68:810–821

    Google Scholar 

  • Gaston K (2000) Global patterns in biodiversity. Nature 405:220–227

    PubMed  CAS  Google Scholar 

  • Gaston K, Fuller R (2007) Biodiversity and extinction: losing the common and the widespread. Prog Phys Geogr 31(2):213–225

    Google Scholar 

  • Gaston K, Pressey R, Margules C (2002) Persistence and vulnerability: retaining biodiversity in the landscape and in protected areas. J Biosci 27:361–384

    PubMed  CAS  Google Scholar 

  • GBIF (2009) Inventory of the global biodiversity information facility’s data portal. Global biodiversity information facility, Copenhagen. Prepared by Gilman E, Robertson T, Holetschek J. Code and 2009 summary statistics available at http://code.google.com/p/gbif-coverage/. Accessed 4 Dec 2009

  • Gehrt S (1996) The human population problem: educating and changing behaviour. Conserv Biol 10(3):900–903

    Google Scholar 

  • Ghilarov A (2000) Ecosystem functioning and intrinsic value of biodiversity. Oikos 90:408–412

    Google Scholar 

  • Gilman E (2002) Guidelines for coastal and marine site-planning and examples of planning and management intervention tools. Ocean Coast Manag 45:377–404

    Google Scholar 

  • Gilman E (2011) Bycatch governance and best practice mitigation technology in global tuna fisheries. Mar Policy 35:590–609

    Google Scholar 

  • Gilman E, Chaloupka M (2011) Availability of primary data on marine invasive alien species for robust species distribution modelling. Preliminary results. Blue Ocean Institute, Cold Spring Harbor, New York

    Google Scholar 

  • Gilman E, Brothers N, Kobayashi D (2005) Principles and approaches to abate seabird bycatch in longline fisheries. Fish Fish 6(1):35–49

    Google Scholar 

  • Gilman E, Kobayashi D, Swenarton T, Brothers N, Dalzell P, Kinan I (2007) Reducing sea turtle interactions in the Hawaii-based longline swordfish fishery. Biol Conserv 139:19–28

    Google Scholar 

  • Gilman E, Ellison J, Duke N, Field C (2008) Review: threats to mangroves from climate change and adaptation options. Aquat Bot 89:237–250

    Google Scholar 

  • Greene S (2004) Indigenous people incorporated? Culture as politics, culture as property in pharmaceutical bioprospecting. Curr Anthropol 45(2):211–237

    Google Scholar 

  • Gregory R, Noble D, Field R, Marchant J, Raven M, Gibbons D (2003) Using birds as indicators of biodiversity. Ornis Hung 12–13:11–24

    Google Scholar 

  • Gregory RD, van Strien A, Vorisek P, Meyling AWG, Noble DG, Foppen RPB, Gibbons DW (2005) Developing indicators for European birds. Philos Trans Royal Soc B-Biol Sci 360:269–288

    Google Scholar 

  • Groombridge B, Jenkins M (2000) Global biodiversity: earth’s living resources in the 21st century. United Nations Environment Programme, World Conservation Monitoring Centre, Cambridge

    Google Scholar 

  • Guisan A, Graham C, Elith J, Huettmann F, NCEAS Species Distribution Modelling Group (2007) Sensitivity of predictive species distribution models to change in grain size. Divers Distrib 13:332–340

    Google Scholar 

  • Hassan R, Scholes R, Ash N (eds) (2005) Ecosystems and human well-being: current state and trends: findings of the condition and trends working group. The millennium ecosystem assessment series, vol 1. Island Press, London

    Google Scholar 

  • Hernandez P, Graham C, Master L, Albert D (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785

    Google Scholar 

  • Holling C (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 4:1–23

    Google Scholar 

  • IMO (2006) Revised guidelines for the identification and designation of particularly sensitive sea areas (PSSAs). Resolution A.982(24). International Maritime Organization, London

    Google Scholar 

  • IOSEA (2010) Towards a system of networked protected marine turtle habitat sites in the indian ocean—South-east asian region. Working Draft—September 2010. Indian Ocean South-East Asian Marine Turtle Memorandum of Understanding Secretariat, Bangkok

    Google Scholar 

  • Isaac N, Turvey S, Collen B, Waterman C, Baillie J (2007) Mammals on the EDGE: conservation priorities based on threat and phylogeny. PLoS One 2(3):e296. doi:10.1371/journal.pone.0000296

    PubMed  Google Scholar 

  • IUCN (2002) Developing a method for prioritising sites for freshwater biodiversity conservation. Report on a workshop organized by the IUCN freshwater biodiversity assessment programme, 27–29 June, 2002. IUCN, Gland

    Google Scholar 

  • IUCN (2009) IUCN red list of threatened species. Version 2009.2. International Union for the Conservation of Nature, Gland

    Google Scholar 

  • Jackson J, Kirby M, Berger W et al (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–638

    PubMed  CAS  Google Scholar 

  • Jordan F (2009) Keystone species and food webs. Philos Trans Roy Soc B 364:1733–1741

    Google Scholar 

  • Kareiva P, Marvier M (2003) Conserving biodiversity coldspots. Am Sci 91:344–351

    Google Scholar 

  • Kendall B, Prendergast J, Bjoernstad O (1998) The macroecology of population dynamics: taxonomic and biogeographic patterns in population cycles. Ecol Lett 1(3):160–164

    Google Scholar 

  • Kier G, Kreft H, Lee T et al (2009) A global assessment of endemism and species richness across island and mainland regions. Proc Natl Acad Sci 106:9322–9327

    PubMed  CAS  Google Scholar 

  • Klein A, Vaissiere B, Cane J, Steffan-Dewenter I, Cunningham S, Kremen C, Tscharnke T (2007) Importance of pollinators in changing landscapes for world crops. Rev Proc Roy Soc 274:303–313

    Google Scholar 

  • Koh L, Dunn R, Sodhi N, Colwell R, Proctor H, Smith V (2004) Species coextinctions and the biodiversity crisis. Science 305:1632–1634

    PubMed  CAS  Google Scholar 

  • Kotliar N (2000) Application of the new keystone-species concept to prairie dogs: how does it work? Conserv Biol 14(6):1715–1721

    Google Scholar 

  • Laffoley D, White A, Kilarski S et al (2008) Establishing marine protected area networks—making it happen. IUCN-WCPA, National Oceanic and Atmospheric Administration and The Nature Conservancy, Washington

  • Lambeck R (1997) Focal species: a multi-species umbrella for nature conservation. Conserv Biol 11:849–856

    Google Scholar 

  • Leadley P, Pereira H, Alkemade R, Fernandez-Manjarres J, Proenca V, Scharlemann J, Walpole M (eds) (2010) Biodiversity scenarios: projections of 21st century change in biodiversity and associated ecosystem services. A technical report for the global biodiversity outlook 3. CBD Technical Series No. 50. Convention on Biological Diversity Secretariat, Montreal. ISBN 92-9225-219-4

  • Lenton T, Held H, Kriegler E, Hall J, Lucht W, Rahmstorf S, Schellnhuber H (2008) Tipping elements in the earth’s climate system. Proc Natl Acad Sci 105:1786–1793

    PubMed  CAS  Google Scholar 

  • Leon Y, Bjorndal K (2001) Selective feeding in the hawksbill turtle, an important predator in coral reef ecosystems. Mar Ecol Prog Ser 245:249–258

    Google Scholar 

  • Lindenmayer D, Manning A, Smith P, Possingham H, Fischer J, Oliver I, McCarthy M (2002) The focal-species approach and landscape restoration: a critique. Conserv Biol 16:338–345

    Google Scholar 

  • Margules C, Pressey R (2000) Systematic conservation planning. Nature 405:243–253

    PubMed  CAS  Google Scholar 

  • McGrady-Steed J, Harriss P, Morin P (1997) Biodiversity regulates ecosystem predictability. Nature 390:162–165

    CAS  Google Scholar 

  • McKinney M (1998) Branching models predict loss of many bird and mammal orders within centuries. Anim Conserv 1:159–164

    Google Scholar 

  • McKinney M, Lockwood J (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14(11):450–453

    PubMed  Google Scholar 

  • Midgley G, Hannah L, Millar D, Ruthorford M, Powrie L (2002) Assessing the vulnerability of species richness to anthropogenic climate change in a biodiversity hotspot. Glob Ecol Biogeogr 11:445–451

    Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington

    Google Scholar 

  • Mittermeier RA, Myers N, Gill RP, Mittermeier CG (1999) Hotspots: earth’s biologically richest and most endangered terrestrial ecoregions. CEMEX, Conservation International, Mexico City. ISBN 9686397582

  • Mittermeier R, Gil P, Hoffmann M et al (2004) Hotspots revisited. CEMEX, Conservation International, Mexico City

    Google Scholar 

  • Mumby P, Edwards A, Arlas-Gonzalez J et al (2004) Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 427:533–536

    PubMed  CAS  Google Scholar 

  • Musick J (1999) Ecology and conservation of long-lived marine animals. In: Musick J (ed)., Life in the slow lane: ecology and conservation of longlived marine animals. Symposium 23. American Fisheries Society, Bethesda, pp 1–10

  • Myers N (1988) Threatened biotas: ‘hotspots’ in tropical forests. Environmentalist 8:1–20

    Google Scholar 

  • Myers N (1990) The biodiversity challenge: expanded hotspot analysis. Environmentalist 10:243–256

    PubMed  CAS  Google Scholar 

  • Myers N, Mittermeier R, Mittermeier C et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    PubMed  CAS  Google Scholar 

  • Nelson E, Mendoza G, Regetz J et al (2009) Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front Ecol Environ 7:4–11

    Google Scholar 

  • NRC (2000) Marine protected areas: tools for sustaining ocean ecosystems. National Research Council, National Academy Press, Washington

    Google Scholar 

  • Olden J, Rooney T (2006) On defining and quantifying biotic homogenization. Glob Ecol Biogeogr 15:113–120

    Google Scholar 

  • Orme C, Davies R, Burgess M et al (2005) Global hotspots of species richness are not congruent with endemism or threat. Nature 43:1016–1019

    Google Scholar 

  • OSPAR Commission (2007) Guidelines for the identification and selection of marine protected areas in the OSPAR maritime area. Reference number: 2003–17, as amended by BDC 2007 summary record (BDC 07/12/1) §3.43b. OSPAR Secretariat, London

    Google Scholar 

  • Pauly D, Watson R (2005) Background and interpretation of the ‘marine trophic index’ as a measure of biodiversity. Phil Trans Roy Soc B 360:415–423

    Google Scholar 

  • Pauly D, Alder J, Bakun A et al (2005) Marine fisheries systems, chapter 18. In: Baker J, Moreno P et al (eds) Ecosystems and human well-being: current state and trends. Findings of the condition and trends working group. Millennium ecosystem assessment, Series vol 1. Island Press, Washington, pp 477–511

    Google Scholar 

  • PECBMS (2007) State of Europe’s common birds, 2007. Pan-European Common Bird Monitoring Scheme, Prague

    Google Scholar 

  • Pereira H, Leadley P, Proença V et al (2010) Scenarios for global biodiversity in the 21st century. Science. doi:10.1126/science.1196624

  • Piatt J, Sydeman W, Wiese F (2007) Introduction: a modern role for seabirds as indicators. Mar Ecol Prog Ser 352:199–204

    Google Scholar 

  • Pierce S, Cowling R, Knight A et al (2005) Systematic conservation planning products for land-use planning: interpretation for implementation. Biol Conserv 125:441–458

    Google Scholar 

  • Plantlife International (2004) Identifying and protecting the world’s most important plant areas: a guide to implementing target 5 of the global strategy for plant conservation. Plantlife International, Salisbury

    Google Scholar 

  • Plantlife International (2010) Important plant areas around the world: target 5 of the CBD global strategy for plant conservation. Plantlife International, Salisbury

    Google Scholar 

  • Polovina J, Abecassis M, Howell E, Woodworth P (2009) Increases in the relative abundance of mid-trophic level fishes concurrent with declines in apex predators in the subtropical North Pacific, 1996–1999. Fish Bull 107:523–531

    Google Scholar 

  • Purvis A, Agapow P, Gittleman J, Mace G (2000) Nonrandom extinction and the loss of evolutionary history. Science 288:328–330

    PubMed  CAS  Google Scholar 

  • Ramsar Secretariat (2008) Strategic framework and guidelines for the future development of the list of wetlands of international importance of the convention on wetlands (Ramsar, Iran, 1971). Secretariat of the Convention on Wetlands of International Importance, Gland

    Google Scholar 

  • Redding D, Moores A (2006) Incorporating evolutionary measures into conservation prioritization. Conserv Biol 20:1670–1678

    PubMed  Google Scholar 

  • Rex M, Stuart C, Hessler R, Allen J, Sanders H, Wilson G (1993) Global-scale latitudinal patterns of species diversity in the deep-sea benthos. Nature 365:636–639

    Google Scholar 

  • Rice J (1995) Food web theory, marine food webs, and what climate change may do to northern marine fish populations. Climate change and northern fish populations. In: Beamish R (ed) Canadian special publication of the fisheries and aquatic sciences 121. National Research Council of Canada, Ottawa, pp 561–568

    Google Scholar 

  • Ricketts T, Dinerstein E, Boucher T et al (2005) Pinpointing and preventing imminent extinctions. Proc Natl Acad Sci USA 102(51):18497–18501

    PubMed  CAS  Google Scholar 

  • Roberge J, Angelstam P (2004) Usefulness of the umbrella species concept as a conservation tool. Conserv Biol 18:76–85

    Google Scholar 

  • Roberts D, Chavan V (2008) Standard identifier could mobilize data and free time. Nature 453:449–450

    PubMed  CAS  Google Scholar 

  • Roberts C, Andelman S, Branch G et al (2003a) Ecological criteria for evaluating candidate sites for marine reserves. Ecol Appl 13:S199–S214

    Google Scholar 

  • Roberts C, Branch G, Bustamante R et al (2003b) Application of ecological criteria in selecting marine reserves and developing reserve networks. Ecol Appl 13:S215–S228

    Google Scholar 

  • Royal Botanic Gardens (2008) International plant names index. Royal Botanic Gardens, Kew. http://www.ipni.org/. Accessed 15 April 2009

  • Salm R, Done T, McLeod E (2006) Marine protected area planning in a changing climate. In: Phinney JT, Hoegh-Guldberg O, Kleypas J, Skirving W, Strong A (eds) Coral reefs and climate change: science and management. American Geophysical Union, Washington

    Google Scholar 

  • Sandwith T, Shine C, Hamilton L, Sheppard D (2001) Transboundary protected areas for peace and co-operation. IUCN, Gland

    Google Scholar 

  • Sarkar S, Pressey R, Faith D et al (2006) Biodiversity conservation planning tools: Present status and challenges for the future. Annu Rev Environ Resour 31:123–159

    Google Scholar 

  • Smith P, Francis R, McVeagh M (1991) Loss of genetic diversity due to fishing pressure. Fish Res 10:309–316

    Google Scholar 

  • Snaith T, Beazley K (2002) Moose (Alces alces Americana [Gray Linnaeus Clinton] Peterson) as a focal species for reserve design in Nova Scotia, Canada. Nat Areas J 22:235–250

    Google Scholar 

  • Springer A, Estes J, van Vliet G, Williams T, Doak D, Danner E, Forney K, Pfister B (2003) Sequential megafaunal collapse in the North Pacific Ocean: an ongoing legacy of industrial whaling? Proc Natl Acad Sci USA 100:12223–12228

    PubMed  CAS  Google Scholar 

  • Stattersfield A, Crosby M, Long A, Wege D (1998) Endemic bird areas of the world. Priorities for biodiversity conservation. BirdLife Conservation Series No. 7. BirdLife International, Cambridge

    Google Scholar 

  • Stevens J, Bonfil R, Dulvy N, Walker P (2000) The effects of fishing on sharks, rays, and chimaeras (chondrichthyans), and the implications for marine ecosystems. ICES J Mar Sci 57(3):476–494

    Google Scholar 

  • Stewart R, Noyce T, Possingham H (2003) Opportunity cost of ad hoc marine reserve design decisions: an example from South Australia. Mar Ecol Prog Ser 253:13

    Google Scholar 

  • Stockwell D, Peterson A (2002) Effects of sample size on accuracy of species distribution models. Ecol Model 148:1–13

    Google Scholar 

  • Suarez A (2004) The value of museum collections for research and society. Bioscience 54:66–74

    Google Scholar 

  • Terborgh J, Lopez L, Nuñez V et al (2001) Ecological meltdown in predator-free forest fragments. Science 294:1923–1926

    PubMed  CAS  Google Scholar 

  • Thomas J, Telfer M, Roy D, Preston C, Greenwood J, Asher J, Fox R, Clarke R, Lawton J (2004) Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 303:1879–1881

    PubMed  CAS  Google Scholar 

  • UNESCO (1995) Statutory framework for the world network of biosphere reserves. United Nations Educational, Scientific and Cultural Organisation, Paris

    Google Scholar 

  • UNESCO (2008) Operational guidelines for the implementation of the world heritage convention. Intergovernmental committee for the protection of the world cultural and natural heritage. United Nations Educational, Scientific and Cultural Organisation, Paris

    Google Scholar 

  • UNESCO MAB Programme (2004) Biosphere reserve nomination form [February 2004]. Man and the biosphere (MAB) programme, United Nations Educational, Scientific and Cultural Organisation, Paris

  • Vamosi J, Wilson J (2008) Nonrandom extinction leads to elevated loss of angiosperm evolutionary history. Ecol Lett 11:1047–1053

    PubMed  Google Scholar 

  • Victor S, Neth L, Golbuu Y, Wolanski E, Richmond R (2004) Sedimentation in mangroves and coral reefs in a wet tropical island, Pohnpei, Micronesia. Estuar Coast Shelf Sci 66(3-4):109–416

    Google Scholar 

  • Wells S (2006) Establishing national and regional systems of MPAs—a review of progress with lessons learned. UNEP World Conservation Monitoring Centre, UNEP Regional Seas Programme, ICRAN, IUCN/WCPA – Marine

  • Wilson E (ed) (1988) BioDiversity. National Academy Press, Washington

    Google Scholar 

  • Wisz M, Hijmans R, Li J, Peterson A, Graham C, Guisan A (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14:763–773

    Google Scholar 

  • Yesson C, Brewer P, Sutton T et al (2007) How global is the global biodiversity information facility? PLoS One 2:e1124

    PubMed  Google Scholar 

Download references

Acknowledgments

Preparation of a working paper, Towards a System of Networked Protected Marine Turtle Habitat Sites in the Indian Ocean—South-East Asian Region (IOSEA 2010), co-authored by E. Gilman and Douglas Hykle of the IOSEA Marine Turtle MoU Secretariat, provided the initial impetus for this research. We are grateful for assistance in inventorying the GBIF data portal provided by Tim Robertson and Andrea Hahn of the Global Biodiversity Information Facility Secretariat, and Jörg Holetschek of the Botanic Garden and Botanical Museum Berlin-Dahlem. Insightful peer reviewer comments improved the final article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Gilman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 245 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilman, E., Dunn, D., Read, A. et al. Designing criteria suites to identify discrete and networked sites of high value across manifestations of biodiversity. Biodivers Conserv 20, 3363–3383 (2011). https://doi.org/10.1007/s10531-011-0116-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-011-0116-y

Keywords

Navigation