Skip to main content

Advertisement

Log in

Species-level correlates of susceptibility to the pathogenic amphibian fungus Batrachochytrium dendrobatidis in the United States

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Disease is often implicated as a factor in population declines of wildlife and plants. Understanding the characteristics that may predispose a species to infection by a particular pathogen can help direct conservation efforts. Recent declines in amphibian populations world-wide are a major conservation issue and may be caused in part by a fungal pathogen, Batrachochytrium dendrobatidis (Bd). We used Random Forest, a machine learning approach, to identify species-level characteristics that may be related to susceptibility to Bd. Our results suggest that body size at maturity, aspects of egg laying behavior, taxonomic order and family, and reliance on water are good predictors of documented infection for species in the continental United States. These results suggest that, whereas local-scale environmental variables are important to the spread of Bd, species-level characteristics may also influence susceptibility to Bd. The relationships identified in this study suggest future experimental tests, and may target species for conservation efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

Bd:

Batrachochytrium dendrobatidis

RF:

Random forest

OOB:

Out of bag

References

  • Altizer S, Nunn CL, Thrall PH et al (2003) Social organization and parasite risk in mammals: integrating theory and empirical studies. Annu Rev Ecol Evol Syst 34:517–547

    Article  Google Scholar 

  • Berger L, Speare R, Daszak P et al (1998) Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc Nat Acad Sci 95:9031–9036

    Article  PubMed  CAS  Google Scholar 

  • Bielby J, Cooper N, Cunningham AA et al (2008) Predicting susceptibility to future declines in the world’s frogs. Conserv Lett 1:82–90

    Article  Google Scholar 

  • Bielby J, Cardillo M, Cooper N et al (2010) Modelling extinction risk in multispecies data sets: phylogenetically independent contrasts versus decision trees. Biodivers Conserv 19:113–127

    Article  Google Scholar 

  • Blaustein AR, Romansic JM, Scheessele EA et al (2005) Interspecific variation in susceptibility of frog tadpoles to the pathogenic fungus Batrachochytrium dendrobatidis. Conserv Biol 19:1460–1468

    Article  Google Scholar 

  • Bosch J, Martinez-Solano I, Garcia-Paris M (2001) Evidence of a chytrid fungus infection involved in the decline of the common midwife toad (Alytes obstetricans) in protected areas of central Spain. Biol Conserv 97:331–337

    Article  Google Scholar 

  • Bradley GA, Rosen PC, Sredl MJ, Jones et al (2002) Chytridiomycosis in native Arizona frogs. J Wildlife Dis 38:206–212

    Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Daszak P, Cunningham AA, Hyatt AD (2003) Infectious disease and amphibian population declines. Diversity Distrib 9:141–150

    Article  Google Scholar 

  • Daszak P, Strieby A, Cunningham AA et al (2004) Experimental evidence that the bullfrog (Rana catesbeiana) is a potential carrier of chytridiomycosis. An emerging fungal disease of amphibians. Herpetol J 14:201–207

    Google Scholar 

  • Garcia TS, Romansic JM, Blaustein AR (2006) Survival of three species of anuran metamorphs exposed to UV-B radiation and the pathogenic fungus Batrachochytrium dendrobatidis. Dis Aquat Organ 72:163–169

    Article  PubMed  CAS  Google Scholar 

  • Halliday T, Tejedo M (1995) Intrasexual selection and alternative mating behavior. In: Heatwole H, Sullivan BK (eds) Amphibian biology: social behaviour, vol 2. Surrey Beatty & Sons PTY Limited. Chipping Norton, NSW, Australia

    Google Scholar 

  • Kiesecker JM, Blaustein AR (1997) Influences of egg laying behavior on pathogenic infection of amphibian eggs. Conserv Biol 11:214–220

    Article  Google Scholar 

  • Kuris AM, Blaustein AR, Alio JJ (1980) Hosts as islands. Am Nat 116:570–586

    Article  Google Scholar 

  • Lannoo M (ed) (2005) Amphibian declines. The conservation status of United States species. University of California Press, Berkely, CA, USA

    Google Scholar 

  • LeClair R, Lauren G (1996) Growth and body size in population of mink frogs Rana septentrionalis from two latitudes. Ecography 19:296–304

    Google Scholar 

  • Liaw A, Wiener M (2002) Classification and regression by random. Forest R News 2(3):18–22

    Google Scholar 

  • Lips KR, Brem F, Brenes R et al (2006) Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proc Natl Acad Sci USA 103:3165–3170

    Article  PubMed  CAS  Google Scholar 

  • Longcore JE, Pessier AP, Nichols DK (1999) Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia 91:219–227

    Article  Google Scholar 

  • Lunetta KL, Hayward LB, Segal J et al (2004) Screening large-scale association study data: exploiting interactions using random forests. BMC Genet 5:32

    Article  PubMed  Google Scholar 

  • Morrison C, Hero J-M, Browning J (2004) Altitudinal variation in the age at maturity, longevity, and reproductive lifespan of anurans in subtropical Queensland. Herpetologica 60:34–44

    Article  Google Scholar 

  • Padgett-Flohr GE, Longcore JE (2007) Taricha torosa (California newt), fungal infection. Herpetol Rev 78:176–177

    Google Scholar 

  • Piotrowski JS, Annis SL, Longcore JE (2004) Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians. Mycologia 96:9–15

    Article  PubMed  Google Scholar 

  • Rachowicz LJ, Briggs CJ (2007) Quantifying the disease transmission function: effects of density on Batrachochytrium dendrobatidis transmission in the mountain yellow-legged frog Rana muscosa. J Anim Ecol 76:711–721

    Article  PubMed  Google Scholar 

  • Rachowicz LJ, Vredenburg VT (2004) Transmission of Batrachochytrium dendrobatidis within and between amphibian life stages. Dis Aquat Organ 61:75–83

    Article  PubMed  Google Scholar 

  • Rachowicz LJ, Knapp RA, Morgan JAT et al (2006) Emerging infectious disease as a proximate cause of amphibian mass mortality. Ecology 87:1671–1683

    Article  PubMed  Google Scholar 

  • Rödder D, Kielgast J, Bielby J et al (2009) Global amphibian extinction risk assessment for the panzootic chytrid fungus. Diversity 1:52–66

    Article  Google Scholar 

  • Ron S (2005) Predicting the distribution of the amphibian pathogen Batrachochytrium dendrobatidis in the New World. Biotropica 37:209–221

    Article  Google Scholar 

  • Smith KG, Weldon C (2007) A conceptual framework for detecting oral chytridiomycosis in tadpoles. Copeia 2007:1024–1028

    Article  Google Scholar 

  • Stuart SN, Chanson JS, Cox NA et al (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786

    Article  PubMed  CAS  Google Scholar 

  • Wake DB, Vredenburg VT (2008) Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc Natl Acad Sci USA 105:11466–11473

    Article  PubMed  CAS  Google Scholar 

  • Wells KD (1977) The social behavior of anuran amphibians. Anim Behav 24:666–693

    Article  Google Scholar 

  • Wells KD (2007) The biology and behavior of amphibians. The University of Chicago Press, Chicago, Illinois, USA

    Google Scholar 

  • Whiles MR, Lips KR, Pringle CM et al (2006) The effects of amphibian population declines on the structure and function of Neotropical stream ecosystems. Front Ecol Environ 4:27–34

    Article  Google Scholar 

  • Woodhams DC, Alford RA (2005) Ecology of chytridiomycosis in rainforest stream frog assemblages of tropical Queensland. Conserv Biol 19:1449–1459

    Article  Google Scholar 

  • Woodhams DC, Alford RA, Briggs CJ et al (2008) Life-history trade-offs influence disease in changing climates: strategies of an amphibian pathogen. Ecology 89:1627–1639

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank T.T. Young, B. Blaustein, S. Andrews, J. Martin, L. Payton, O. Howlin, E. Girvetz, R. Bancroft, S. Bancroft, and J. Ng for assistance. B. Han was funded by an NSF Postdoctoral Research Fellowship in Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Betsy A. Bancroft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bancroft, B.A., Han, B.A., Searle, C.L. et al. Species-level correlates of susceptibility to the pathogenic amphibian fungus Batrachochytrium dendrobatidis in the United States. Biodivers Conserv 20, 1911–1920 (2011). https://doi.org/10.1007/s10531-011-0066-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-011-0066-4

Keywords

Navigation