Skip to main content

Advertisement

Log in

Land use and biodiversity congruences at local scale: applications to conservation strategies

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

The establishment of protected areas is traditionally considered indispensable to preserve biodiversity hotspots or areas inhabited by threatened species. The analysis of correlations between composition or richness of several taxonomic groups in a specific area has emerged as a useful mechanism to quickly identify areas of biological and conservation interest, and is currently used to select and design protected areas. The effect of habitat fragmentation on these correlations at a regional scale has been studied, but the effect of land use on the correlations obtained at local scale is poorly understood. We evaluated the relationships among different taxonomic groups frequently used in biological assessments for reserve design (vascular flora, amphibians, reptiles, birds and mammals), taking into account the effects of land use on these correlations. We compared richness and species composition of these groups in 1 km2 quadrants within a total area of 75 km2 in a low mountain Mediterranean area. Richness and composition were significantly correlated between several groups, both using the complete data set and also analyzing natural and disturbed areas separately. Species composition and species richness correlations were not congruent at the full landscape approach, nor natural and disturbed quadrants. Factors extrinsic to the communities also varied their influence in the assemblage of the community and species richness or not land uses were taken into account. According to our results, natural and human-disturbed areas should not be combined in cross-taxon congruences analysis at local scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anand M, Laurence S, Rayfield B (2005) Diversity relationships among taxonomic groups in recovering and restored forests. Conserv Biol 19:955–962

    Article  Google Scholar 

  • Atauri JA, de Lucio JV (2001) The role of landscape structure in species richness distribution of birds, amphibians, reptiles and lepidopterans in Mediterranean landscapes. Landscape Ecol 16:147–159

    Article  Google Scholar 

  • Azeria ET, Fortin D, Lemaitre J et al (2009) Fine-scale structure and cross-taxon congruence of bird and beetle assemblages in an old-growth boreal forest mosaic. Glob Ecol Biogeogr 18:333–345

    Article  Google Scholar 

  • Baldi A (2003) Using higher taxa as surrogates of species richness: a study based on 3700 Coleoptera, Diptera, and Acari species in Central-Hungarian reserves. Basic Appl Ecol 4:589–593

    Article  Google Scholar 

  • Balmford A (1998) On hotspots and the use of indicators for reserve selection. Trends Ecol Evol 13:409

    Article  PubMed  CAS  Google Scholar 

  • Bibby CJ, Burgess ND, Hill DA, Mustoe SH (2000) Bird census techniques, 2nd edn. Academic Press, London

    Google Scholar 

  • Billeter R, Liira J, Bailey D et al (2008) Indicators for biodiversity in agricultural landscapes: a pan-European study. J Appl Ecol 45:141–150

    Article  Google Scholar 

  • Bini LM, Galli Vieria LC, Machado J, Machado Velho LF (2007) Concordance of species composition patterns among microcrustaceans, rotifers and testate amoebae in a shallow pond. Int Rev Hydrobiol 92:1–22

    Article  Google Scholar 

  • Blomberg S, Shine R (1996) Reptiles. In: Sutherland WJ (ed) Ecological census techniques: a handbook. Cambridge University Press, Cambridge

    Google Scholar 

  • Bonnet E, van de Peer Y (2002) ZT: a software tool for simple and partial Mantel tests. J Stat Softw 7:1–12

    Google Scholar 

  • Cameron SE, Williams KJ, Mitchell DK (2008) Efficiency and concordance of alternative methods for minimizing opportunity costs in conservation planning. Conserv Biol 22:886–896

    Article  PubMed  Google Scholar 

  • Castellano S, Balletto E (2002) Is the partial Mantel test inadequate? Evolution 56:1871–1873

    PubMed  Google Scholar 

  • Castro-Luna AA, Sosa VJ, Castillo-Campos G (2007) Bat diversity and abundance associated with the degree of secondary succession in a tropical forest mosaic in south-eastern Mexico. Anim Conserv 10:219–228

    Article  Google Scholar 

  • Chan EKH, Yu YT, Zhang YX, Dudgeon D (2008) Distribution patterns of birds and insect prey in tropical riparian forest. Biotropica 40(5):623–629

    Article  Google Scholar 

  • da Silva AP Jr, Mendes AR (2008) The effect of a mega-fragmentation process on large mammal assemblages in the highly-threatened Pernambuco Endemism Centre, north-eastern Brazil. Biodivers Conserv 17:1455–1464

    Article  Google Scholar 

  • Donald PF, Green RE, Heath MF (2001) Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc R Soc Lond B Biol 268:25–29

    Article  Google Scholar 

  • Ewers RM, Kapos V, Coomes DA et al (2009) Mapping community change in modified landscapes. Biol Conserv 142:2872–2880

    Article  Google Scholar 

  • Faith DP (1994) Genetic diversity and taxonomic priorities for conservation. Biol Conserv 68:69–74

    Article  Google Scholar 

  • Fleishman E, Thomson JR, MacNally R et al (2005) Using indicator species to predict species richness of multiple taxonomic groups. Conserv Biol 19:1125–1137

    Article  Google Scholar 

  • Flynn DFB, Gogol-Prokurat M, Nogeire T et al (2009) Loss of functional diversity under land use intensification across multiple taxa. Ecol Lett 12:22–33

    Article  PubMed  Google Scholar 

  • Gaston KJ (2000) Global patterns in biodiversity. Nature 405:220–227

    Article  PubMed  CAS  Google Scholar 

  • Gering J, Crist TO, Veech JA (2003) Additive partitioning of species diversity across multiple spatial scales: implications for regional conservation of biodiversity. Conserv Biol 17:488–499

    Article  Google Scholar 

  • Gibson DJ (2002) Methods in comparative plant population ecology. Oxford University Press, Oxford

    Google Scholar 

  • Giraudo AR, Matteucci SD, Alonso J et al (2008) Comparing bird assemblages in large and small fragments of the Atlantic Forest hotspots. Biodivers Conserv 17:1251–1265

    Article  Google Scholar 

  • Grand J, Buonaccorsi J, Cushman SA et al (2004) A multiscale landscape approach to predicting bird and moth rarity hotspots, in a threatened pitch pine-scrub oak community. Conserv Biol 18:1063–1077

    Article  Google Scholar 

  • Harris GM, Jenkins GM, Pimm SL (2005) Refining biodiversity conservation priorities. Conserv Biol 19:1957–1968

    Article  Google Scholar 

  • Hess GR, Bartel RA, Leidner AK et al (2006) Effectiveness of biodiversity indicators varies with extent, grain, and region. Biol Conserv 132:448–457

    Article  Google Scholar 

  • Heyer WR, Donnelly MA, McDiarmid RW et al (eds) (1994) Measuring and monitoring biological diversity. Standard methods for amphibians. Smithsonian Institution Press, Washington

    Google Scholar 

  • Hobohm C (2003) Characterization and ranking of biodiversity hotspots: centres of species richness and endemism. Biodivers Conserv 12:279–287

    Article  Google Scholar 

  • Howard PC, Viskanic P, Davenport TRB et al (1998) Complementarity and the use of indicator groups for reserve selection in Uganda. Nature 394:472–475

    Article  CAS  Google Scholar 

  • Huber PR, Greco SE, Thorne JH (2010) Spatial scale effects on conservation network design: trade-offs and omissions in regional versus local scale planning. Landscape Ecol 25:683–695

    Article  Google Scholar 

  • Kati V, Devillers P, Dufrêne M et al (2004) Testing the value of six taxonomic groups as biodiversity indicators at a local scale. Conserv Biol 18:667–675

    Article  Google Scholar 

  • Kleijn D, Sutherland WJ (2003) How effective are European agrienvironment schemes in conserving and promoting biodiversity? J Appl Ecol 40:947–969

    Article  Google Scholar 

  • Langhammer PF, Bakarr MI, Bennun LA et al (2007) Identification and gap analysis of key biodiversity areas: targets for comprehensive protected area systems. IUCN, Gland, Switzerland

    Book  Google Scholar 

  • Lennon JJ, Koleff P, Greenwood JJD, Gaston KJ (2004) Contribution of rarity and commonness to patterns of species richness. Ecol Lett 7:81–87

    Article  Google Scholar 

  • López de Luzuriaga A, Olano JM (2006) Con los pies en el suelo: incluyendo la estructura espacial de los datos en los análisis multivariantes. Ecosistemas 15. http://www.revistaecosistemas.net/articulo.asp?Id=441

  • Lovell S, Hamer M, Slotow R, Herbert D (2007) Assessment of congruency across invertebrate taxa and taxonomic levels to identify potential surrogates. Biol Conserv 139:113–125

    Article  Google Scholar 

  • Lumaret JP, Lobo JM (1996) Geographic distribution of endemic dung beetles (Coleoptera, Scarabaeidae) in the Western Palaearctic region. Biodivers Lett 3:192–199

    Article  Google Scholar 

  • Lund MP, Rahbek C (2002) Cross-taxon congruence in complementarity and conservation of temperate biodiversity. Anim Conserv 5:163–171

    Article  Google Scholar 

  • MacNally R, Fleishman E (2004) A successful predictive model of species richness based on indicator species. Conserv Biol 18:646–647

    Article  Google Scholar 

  • Magurran EM (1983) Ecological diversity and its measurement. Chapman and Hall, London

    Google Scholar 

  • Mason CF, Macdonald SM (2000) Influence of landscape and land-use on the distribution of breeding birds in farmland in eastern England. J Zool 251:339–348

    Article  Google Scholar 

  • McKnight MW, White PS, McDonald RI et al (2007) Putting beta-diversity on the map: broad-scale congruence and coincidence in the extremes. Plos Biol 5:e272

    Article  PubMed  Google Scholar 

  • Mouillot D, Culioli JM, Pelletier D, Tomasini JA (2008) Do we protect biological originality in protected areas? A new index and an application to the Bonifacio Strait Natural Reserve. Biol Conserv 141:1569–1580

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  PubMed  CAS  Google Scholar 

  • Ninyerola M, Pons X, Roure JM (2005) Atlas Climático Digital de la Península Ibérica. Metodología y aplicaciones en bioclimatología y geobotánica, Universidad Autónoma de Barcelona, Bellaterra

    Google Scholar 

  • Nogués-Bravo D, Martínez-Rica JP (2004) Factors controlling the spatial species richness pattern of four groups of terrestrial vertebrates in an area between two different biogeographic regions in northern Spain. J Biogeogr 31:629–641

    Article  Google Scholar 

  • Nordén B, Paltto H, Götmark F, Wallin K (2007) Indicators of biodiversity, what do they indicate?—lessons for conservation of cryptogams in oak-rich forest. Biol Conserv 135:369–379

    Article  Google Scholar 

  • Oertli S, Müller A, Steiner D et al (2005) Cross-taxon congruence of species diversity and community similarity among three insect taxa in a mosaic landscape. Biol Conserv 126:195–205

    Article  Google Scholar 

  • Orme CD, Davies RG, Burgess M et al (2005) Global hotspots of species richness are not congruent with endemism or threat. Nature 436:1016–1019

    Article  PubMed  CAS  Google Scholar 

  • Ovadia O (2003) Ranking hotspots of varying sizes: a lesson from the nonlinearity of the species-area relationship. Conserv Biol 17:1440–1441

    Article  Google Scholar 

  • Parris KM, Lindenmayer DB (2004) Evidence that creation of a Pinus radiata plantation in south-eastern Australia has reduced habitat for frogs. Acta Oecol 25:93–101

    Article  Google Scholar 

  • Paszkowski CA, Tonn WM (2000) Community concordance between the fish and aquatic birds of lakes in northern Alberta, Canada: the relative importance of environmental and biotic factors. Freshw Biol 43:421–437

    Article  Google Scholar 

  • Peak RG, Thompson FR III (2006) Factors affecting avian species richness and density in riparian areas. J Wildl Manag 70:173–179

    Article  Google Scholar 

  • Pharo EJ, Beattie AJ, Binns D (1999) Vascular plant diversity as a surrogate for bryophyte and lichen diversity. Conserv Biol 13:282–292

    Article  Google Scholar 

  • Prendergast JR, Quinn RM, Lawton JH et al (1993) Rare species, the coincidence of diversity hotspots and conservation strategies. Nature 365:335–337

    Article  Google Scholar 

  • Prendergast JR, Quinn RM, Lawton JH (1999) The gaps between theory and practice in selecting nature reserves. Conserv Biol 13:484–492

    Article  Google Scholar 

  • Qian H, Ricklefs RE (2008) Global concordance in diversity patterns of vascular plants and terrestrial vertebrates. Ecol Lett 11:547–553

    Article  PubMed  Google Scholar 

  • Rodrigues ASL, Andelman SJ, Bakarr MI et al (2004) Effectiveness of the global protected area network in representing species diversity. Nature 428:640–643

    Article  PubMed  CAS  Google Scholar 

  • Sauberer N, Zulka KP, Abensperg-Traun M et al (2004) Surrogate taxa for biodiversity in agricultural landscapes of eastern Austria. Biol Conserv 117:181–190

    Article  Google Scholar 

  • Sebastián-González E, Sánchez-Zapata JA, Botella F (2010) Agricultural ponds as alternative habitat for waterbirds: spatial and temporal patterns of abundance and management strategies. Eur J Wildl Res 56:11–20

    Article  Google Scholar 

  • Shriner SA, Wilson KR, Flather CH (2006) Reserve networks based on richness hotspots and representation vary with scale. Ecol Appl 16:1660–1673

    Article  PubMed  Google Scholar 

  • Soininen J, Paavola R, Kwandrans J, Muotka T (2009) Diatoms: unicellular surrogates for macroalgal community structure in streams? Biodivers Conserv 18:79–89

    Article  Google Scholar 

  • Stag Electronic (2003) Batscan 8.7. www.batbox.com

  • StatSoft (2001) STATISTICA: data analysis software system, version 6.0. StatSoft, Oklahoma

    Google Scholar 

  • Su JC, Debinski DM, Jakubausjas ME, Kindscher K (2004) Beyond species richness: community similarity as a measure of cross-taxon congruence for coarse-filter conservation. Conserv Biol 18:167–173

    Article  Google Scholar 

  • Sutherland WJ (1996) Mammals. In: Sutherland WJ (ed) Ecological census techniques: a handbook. Cambridge University Press, Cambridge

    Google Scholar 

  • Tscharntke T, Klein AM, Kruess A et al (2005) Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecol Lett 8:857–874

    Article  Google Scholar 

  • Tyre AJ, Tenhumberg T, Field SA et al (2003) Improving precision and reducing bias in biological surveys by estimating false negative error rates in presence–absence data. Ecol Appl 13:1790–1801

    Article  Google Scholar 

  • Urbina-Cardona JN, Olivares-Pérez M, Reynoso VH (2006) Herpetofauna diversity and microenvironment correlates across a pasture–edge–interior ecotone in tropical rainforest fragments in the Los Tuxtlas Biosphere Reserve of Veracruz, Mexico. Biol Conserv 132:61–75

    Article  Google Scholar 

  • Vessby K, Söderström B, Glimskär A, Svensson B (2002) Species-richness correlations of six different taxa in Swedish seminatural grasslands. Conserv Biol 16:430–439

    Article  Google Scholar 

  • Vickery JA, Bradbury RB, Henderson IG et al (2004) The role of agrienvironment schemes and farm management practices in reversing the decline of farmland birds in England. Biol Conserv 119:19–39

    Article  Google Scholar 

  • Weaver JC (1994) Indicator species and scale of observation. Conserv Biol 9:939–942

    Article  Google Scholar 

  • Xu H, Wu J, Liu Y et al (2008) Biodiversity congruence and conservation strategies: a national test. Bioscience 58:632–639

    Article  Google Scholar 

  • Youssef NH, Elshahed MS (2008) Species richness in soil bacterial communities: a proposed approach to overcome sample size bias. J Microbiol Meth 75:86–91

    Article  Google Scholar 

  • Zar JH (1996) Biostatistical analysis, 3rd edn. Prentice Hall, New Jersey

    Google Scholar 

  • Zuberogoitia I, Campos FB (1998) Censusing owls in large areas: a comparison between methods. Ardeola 45:47–53

    Google Scholar 

Download references

Acknowledgements

We would like to thank the Service of Environment of the Local government of Carcaixent for funding and giving all the facilities to develop the field work. We are also very grateful to D. Beneyto, L. García and R. Piculo for their help in the surveys. We sincerely thank Dr. George R. Hess for his comments and contributions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Vera.

Appendix

Appendix

See Table 7.

Table 7 Surveys in Carcaixent

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vera, P., Sasa, M., Encabo, S.I. et al. Land use and biodiversity congruences at local scale: applications to conservation strategies. Biodivers Conserv 20, 1287–1317 (2011). https://doi.org/10.1007/s10531-011-0028-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-011-0028-x

Keywords

Navigation