Skip to main content

Advertisement

Log in

Potential loss of genetic variability despite well established network of reserves: the case of the Iberian endemic lizard Lacerta schreiberi

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Although future anthropogenic climate change is recognized as one of the major threats to European species, its implementation during reserve planning has only been started recently. We here describe climate change impacts on the Iberian endemic lizard Lacerta schreiberi expecting serious declines and range reductions due to a loss of suitable climate space in the next future. We apply species distribution models to assess possible future changes in the lizard’s range, identify areas with high extinction risk meriting conservation efforts and analyze whether the Natura 2000 network in its current stage will offer a sufficient protection for the genetically most valuable lineages. Despite a very good coverage and connectivity of the most valuable populations of L. schreiberi with the existing protected sites network, our results predict a strong loss of genetic variability by 2080. Also, two main patterns become evident: While the genetically less diverse north-western populations may be less affected by climate change, the climate change effects on the southern isolates and the genetically most diverse populations within the Central System may be devastating. To improve a successful prospective conservation of L. schreiberi the management of protected sites needs to consider the processes that threaten this species. Furthermore, our study highlights the urgent need to consider climate change effects on evolutionary significant units within the Natura 2000 framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

IPCC:

Interngovernmental Panel on Climate Change

SDM:

Species distribution model

BIO5:

Maximum temperature of the warmest month

BIO6:

Minimum temperature of the coldest month

BIO13:

Precipitation of the wettest month

BIO14:

Precipitation of the driest month

BIO15:

Precipitation seasonality

AUC:

Area under the receiver operating characteristic curve

TSS:

True skills statistics

ANN:

Artificial neural networks

CTA:

Classification tree analysis

GAM:

Generalized additive models

GBM:

Generalized boosting models

GLM:

Generalized linear models

MARS:

Multivariate adaptive regression splines

MDA:

Mixture discriminant analysis

RF:

Random forests

SRE:

Surface range envelopes

References

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Proceedings of the second international symposium on information theory, Budapest, pp 267–281

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232

    Article  Google Scholar 

  • Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47

    Article  PubMed  Google Scholar 

  • Araújo MB, Lobo JM, Moreno JC (2007) The effectiveness of Iberian Protected areas in conserving terrestrial biodiversity. Conserv Biol 21:1423–1432

    PubMed  Google Scholar 

  • Araújo MB, Cabeza M, Thullier W et al (2004) Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Glob Chang Biol 10:1618–1626

    Article  Google Scholar 

  • Araújo MB, Thuiller W, Pearson RG (2006) Climate warming and the decline of amphibians and reptiles in Europe. J Biogeogr 33:1712–1728

    Article  Google Scholar 

  • Arnell NW (1999) The effect of climate change on hydrological regimes in Europe: a continental perspective. Glob Environ Change 9:5–23

    Article  Google Scholar 

  • Beaumont LJ, Hughes L, Poulsen M (2005) Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol Model 186:250–269

    Article  Google Scholar 

  • Beebee TJC, Wilkinson JW, Buckley J (2009) Amphibian declines are not uniquely high amongst the vertebrates: trend determination and the British perspective. Diversity 1:67–88

    Article  Google Scholar 

  • Bilton DT, Morol PM, Mascheretti S et al (1998) Mediterranean Europe as an area of endemism for small mammals rather than a source for northwards postglacial colonization. Proc Biol Sci 265:1219–1226

    Article  PubMed  CAS  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Breiman L, Friedman J, Stone CS et al (1984) Classification and regression trees. Chapman and Hall

  • Brito JC, Brito e Abreu F, Paulo OS et al (1996) Distribution of Schreiber’s green lizard (Lacerta schreiberi) in Portugal: a predictive model. Herpetol J 6:43–47

    Google Scholar 

  • Brito JC, Paulo OS, Crespo EG (1998) Distribution and habitats of Schreiber’s green lizard (Lacerta schreiberi) in Portugal. Herpetol J 8:187–194

    Google Scholar 

  • Brito JC, Crespo EG, Paulo OS (1999a) Modelling wildlife distributions: Logistic multiple regression vs. overlap analysis. Ecography 22:251–260

    Article  Google Scholar 

  • Brito JC, Godinho R, Luis C et al (1999b) Management strategies for conservation of the lizard Lacerta schreiberi in Portugal. Biol Conserv 89:311–319

    Article  Google Scholar 

  • Busby JR (1991) BIOCLIM—a bioclimatic analysis and prediction system. In: Margules CR, Austin MP (eds) Nature conservation: cost effective biological surveys and data analysis. CSIRO, Melbourne, pp 64–68

    Google Scholar 

  • Chamaillé-Jammes S, Massot M, Aragón P et al (2006) Global warming and positive fitness response in mountain populations of common lizards Lacerta vivipara. Glob Chang Biol 12:392–402

    Article  Google Scholar 

  • Contreras V, Martínez-Meyer E, Valiente E et al (2009) Recent decline and potential distribution in the last remnant area of the microendemic Mexican axolotl (Ambystoma mexicanum). Biol Conserv 142:2881–2885

    Article  Google Scholar 

  • Cox NA, Temple HJ (2009) European red list of reptiles. Office for official publications of the European Community, Luxembourg

    Google Scholar 

  • Crandall KA, Bininda-Emonds ORP, Mace GM et al (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295

    Article  PubMed  Google Scholar 

  • Emori S, Nozawa T, Abe-ouchi A et al (1999) Coupled ocean atmosphere model experiments of future climate change with an explicit representation of sulphate aerosol scattering. J Meteorol Soc Jpn 77:1299–1307

    Google Scholar 

  • Ficetola GF, Padoa-Schioppa E, De Bernardi F (2009) Influence of landscape elements in riparian buffers on the conservation of semiaquatic amphibians. Conserv Biol 23:114–123

    Article  PubMed  Google Scholar 

  • Flato GM, Boer GJ (2001) Warming asymmetry in climate change simulations. Geophys Res Lett 28:195–198

    Article  Google Scholar 

  • Flato GM, Boer GJ, Lee WG et al (2000) The Canadian Centre for Climate Modelling and Analysis global coupled model and its climate. Clim Dyn 16:451–467

    Article  Google Scholar 

  • Friedman J (1991) Multivariate adaptive regression splines. Ann Stat 19:1–141

    Article  Google Scholar 

  • Gibbon JW, Scott DE, Ryan TJEA (2000) The global decline of reptiles, déjà vu amphibians. BioScience 50:653–666

    Article  Google Scholar 

  • Godinho R, Teixeira J, Rebelo R et al (1999) Atlas of the continental Portuguese herpetofauna: an assemblage of published and new data. Rev Esp Herpetol 13:61–82

    Google Scholar 

  • Godinho MR, Paulo OS, Ferrand N et al (2003) Major patterns of population differentiation in the Iberian Schreiber’s green lizard (Lacerta schreiberi) inferred from protein polymorphism. Herpetol J 13:35–42

    Google Scholar 

  • Godinho MR, Crespo EG, Ferrand N (2008) The limits of mtDNA phylogeography: complex patterns of population history in a highly structured Iberian lizard are only revealed by the use of nuclear markers. Mol Ecol 17:4670–4683

    Article  PubMed  CAS  Google Scholar 

  • Gordon HB, O′Farrell SP (1997) Transient climate change in the CSIRO coupled model with dynamic sea ice. Mon Weather Rev 125:875–907

    Article  Google Scholar 

  • Gordon C, Cooper C, Senior CA et al (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168

    Article  Google Scholar 

  • Guisan A, Zimmermann N (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Habel JC, Nève G, Rödder D et al (2010) Global warming will affect the genetic diversity and uniqueness of Lycaena helle populations. Glob Chang Biol. doi:10.1111/j.1365-2486.2010.02233.x

  • Hanley J, McNeil B (1982) The meaning of the use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36

    PubMed  CAS  Google Scholar 

  • Hannah L, Midgley G, Andelman S et al (2007) Protected area needs in a changing climate. Front Ecol 5:131–138

    Article  Google Scholar 

  • Hastie TJ, Tibishirani R (1990) Generalized additive models. Chapman and Hall

  • Hastie TJ, Tibishirani R, Buja A (1994) Flexible discriminant analysis by optimal scoring. J Am Stat Assoc 89:1255–1270

    Article  Google Scholar 

  • Heikkinen RK, Luoto M, Araújo MB et al (2006) Methods and uncertainties in bioclimatic envelope modeling under climate change. Prog Phys Geogr 30:751–777

    Article  Google Scholar 

  • Heller NE, Zavaleta ES (2009) Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol Conserv 142:14–32

    Article  Google Scholar 

  • Hewitt GM (2000) The genetic legacy of the Quaternary ice age. Nature 22:907–913

    Article  CAS  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL et al (2005a) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hijmans RJ, Guarino L, Jarvis A et al (2005b) DIVA-GIS version 5.2 manual

  • IPCC (2007) Summary for policymakers. In: Solomon S, Quin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1–18

    Google Scholar 

  • Jeschke JM, Strayer DL (2008) Usefulness of bioclimatic models for studying climate change and invasive species. Ann NY Acad Sci 1134:1–24

    Article  PubMed  Google Scholar 

  • Kearney M, Porter WP (2004) Mapping the fundamental niche: physiology, climate, and the distribution of a nocturnal lizard. Ecology 85:3119–3131

    Article  Google Scholar 

  • Kearney M, Phillips BL, Tracy CR et al (2008) Modelling species distributions without using species distributions: the cane toad in Australia under current and future climates. Ecography 31:423–434

    Article  Google Scholar 

  • Latta RG (2008) Conservation genetics as applied evolution: from genetic pattern to evolutionary process. Evol Appl 1:84–94

    Article  Google Scholar 

  • Levinsky I, Skov F, Svenning J-C et al (2007) Potential impacts of climate change on the distributions and diversity of European mammals. Biodiv Conserv 16:3803–3816

    Article  Google Scholar 

  • Malcom JR, Liu D, Neilson RP et al (2006) Global warming and extinction of endemic species from biodiversity hotspots. Conserv Biol 20:538–548

    Article  Google Scholar 

  • Malkmus R (2004) Amphibians and reptiles of Portugal. Madeira and the Azores-Archipelago. Ganter, Ruggell

  • Marmion M, Parviainen M, Luoto M et al (2009) Evaluation of consensus methods in predictive species distribution modelling. Divers Distrib 15:59–69

    Article  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models. Chapman and Hall

  • Monserud RA, Leemans R (1992) Comparing global vegetation maps with Kappa statistics. Ecol Model 62:275–293

    Article  Google Scholar 

  • Mücher CA, Hennekens SM, Bunce RGH et al (2009) Modelling the spatial distribution of Natura 2000 habitats across Europe. Landsc Urban Plan 92:148–159

    Article  Google Scholar 

  • Newbold NC, Siikamäki J (2009) Prioritizing conservation activities using reserve site selection methods and population viability analysis. Ecol Appl 19:1774–1790

    Article  PubMed  Google Scholar 

  • Ohlemüller R, Anderson BJ, Araújo MB et al (2008) The coincidence of climatic and species rarity: high risk to small-range species from climate change. Biol Lett 4:568–572

    Article  PubMed  Google Scholar 

  • Orella JC, Simón JC, Vaquero J et al (1998) La lista nacional de lugares de la Directiva Hábitats 92/43 CEE. Metodología y proceso de elaboración. Ecología 12:3–65

    Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  PubMed  CAS  Google Scholar 

  • Paulo OS, Dias C, Bruford MW et al (2001) The persistence of Pliocene populations through the Pleistocene climate cycles: evidence from the Phylogeography of an Iberian lizard. Proc R Soc B 268:1625–1630

    Article  PubMed  CAS  Google Scholar 

  • Pearson RG, Thullier W, Araújo MB et al (2006) Model-based uncertainty in species range prediction. J Biogeogr 33:1704–1711

    Article  Google Scholar 

  • Pope V, Gallani ML, Rowntree PR et al (2000) The impact of new physical parameterizations in the Hadley Centre climate model: HadAM3. Clim Dyn 16:123–146

    Article  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing

  • Ramirez J, Jarvis A (2008) High resolution statistically downscaled future climate surfaces. Centre for Tropical Agriculture, CIAT

  • Ridgeway G (1999) The state of boosting. Comput Sci Stat 31:172–181

    Google Scholar 

  • Ripley BD (1996) Pattern recognition and neural networks. Cambridge University Press

  • Rödder D, Dambach J (2010) Bioclimatic models as predictive GIS tools for the identification of potential refuges and possible migration pathways. In: Habel JC, Assmann T (eds) Surviving on a changing climate—phylogeograhy and conservation of relict species. Springer, New York

    Google Scholar 

  • Rödder D, Lötters S (2009) Niche shift or niche conservatism? Climatic properties of the native and invasive range of the Mediterranean Housegecko Hemidactylus turcicus. Glob Ecol Biogeogr 18:674–687

    Article  Google Scholar 

  • Rödder D, Schmidtlein S, Veith M et al (2009) Alien invasive slider turtle in unpredicted habitat: a matter of niche shift or of predictors studied? PLoS ONE 4:e7843

    Article  PubMed  CAS  Google Scholar 

  • Schwartz MW, Iverson LR, Prasad AM et al (2006) Predicting extinctions as a result of climate change. Ecology 87:1611–1615

    Article  PubMed  Google Scholar 

  • Stuart S, Chanson JS, Cox NA et al (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786

    Article  PubMed  CAS  Google Scholar 

  • Stuart-Fox D, Godinho MR, de Belloco JG et al (2009) Variation in phenotype, parasite load and male competitive ability across a cryptic hybrid zone. PLoS ONE 4:e5677

    Article  PubMed  CAS  Google Scholar 

  • Swets K (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  PubMed  CAS  Google Scholar 

  • Thomas CD, Cameron A, Green RE et al (2004) Extinction risk from climate change. Nature 427:145–148

    Article  PubMed  CAS  Google Scholar 

  • Thuiller W (2003) BIOMOD—optimizing predictions of species distributions and projecting potential future shifts under global change. Glob Chang Biol 9:1352–1362

    Article  Google Scholar 

  • Thuiller W, Araújo MB, Lavorel S (2004) Do we need land-cover data to model species distributions in Europe? J Biogeogr 31:353–361

    Google Scholar 

  • Thuiller W, Lavorel S, Araújo MB et al (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 23:8245–8250

    Article  CAS  Google Scholar 

  • Thuiller W, Lavorel S, Sykes MT et al (2006) Using niche-based modelling to assess the impact of climate change on tree functional diversity in Europe. Divers Distrib 12:49–60

    Article  Google Scholar 

  • Thuiller W, Lafourcade B, Engler R et al (2009) BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32:369–373

    Article  Google Scholar 

  • Tingley MW, Beissinger SR (2009) Detecting range shifts from historical species occurrences: new perspectives on old data. Tends Ecol Evol 24:625–633

    Article  Google Scholar 

  • Vos CC, Berry P, Opdam P et al (2008) Adapting landscapes to climate change: examples of climate-proof ecosystem networks and priority adaptation zones. J Appl Ecol 45:1722–1731

    Article  Google Scholar 

  • Wang G (2005) Agricultural drought in a future climate: results from 15 global climate models participating in the IPCC 4th assessment. Clim Dyn 25:739–753

    Article  Google Scholar 

  • Weinsheimer F, Mengistu AA, Rödder D (2010) Potential distribution of threatened Leptopelis ssp. (Anura, Arthroleptidae) in Ethiopia derived from climate and land-cover data. Endang Species Res 9:117–124

    Article  Google Scholar 

Download references

Acknowledgments

This work benefited from a grant of the ‘Forschungsinitiative’ of the Ministry of Education, Science, Youth and Culture of the Rhineland-Palatinate state of Germany ‘Die Folgen des Global Change für Bioressourcen, Gesetzgebung und Standardsetzung’ as well as a grant of the ‘Deutsche Bundesstiftung Umwelt’ (DBU). Two anonymous referees kindly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Rödder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rödder, D., Schulte, U. Potential loss of genetic variability despite well established network of reserves: the case of the Iberian endemic lizard Lacerta schreiberi . Biodivers Conserv 19, 2651–2666 (2010). https://doi.org/10.1007/s10531-010-9865-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-010-9865-2

Keywords

Navigation