Skip to main content
Log in

Influence of fine woody debris on spider diversity and community structure in forest leaf litter

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Exploitation of forests for biofuel results in variable amounts of fine woody debris (FWD) being left on the forest floor. Such practices have the potential to affect the diversity and taxonomic composition of litter-dwelling organisms. The ability to predict the consequences of harvesting biofuel will be strengthened by knowledge of how variation in FWD affects litter organisms in non-harvested forests. A field experiment with three treatments [Control (no manipulation), FWD Removal, and FWD Addition] was carried out in replicated open plots in an unexploited forest in order to determine how the amount of fallen FWD affects the abundance, diversity and community composition of spiders, selected because of their importance as predators in the leaf-litter food web. Manipulation of FWD started in August, and by the following July total spider density in the FWD Addition treatment was 1.6× that of FWD Removal plots. Spider density in FWD Removal plots was 30% lower than the Control treatment, with no statistically significant difference between Control and FWD Addition. Manipulating FWD had no statistically significant effects on standard indices of spider diversity. However, multivariate community-level analyses revealed statistically significant differences in spider community structure between the FWD Removal and FWD Addition treatments. Two dominant genera of web builders contributed the most to this effect of manipulating FWD. Our results, and the findings of studies of woody debris in younger forests, suggest that the relatively small effects of FWD in our field experiment may reflect the age of the forest, with effects on the fauna likely being larger in forests younger than the one we studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbot DT, Crossley DA Jr (1982) Woody litter decomposition following clear-cutting. Ecology 63(1):35–42. doi:10.2307/1937028

    Article  Google Scholar 

  • Arnett RH (1985) American Insects: Handbook of the Insects of America North of Mexico. Van Nostrand Reinhold, New York

    Google Scholar 

  • Ǻström M, Mats D, Hylander K, Nilsson C (2005) Effects of slash harvest on bryophytes and vascular plants in southern boreal forest clear-cuts. J Appl Ecol 42(6):1194–1202

    Article  Google Scholar 

  • Belleau A, Brais S, Paré D (2006) Soil nutrient dynamics after harvesting and slash treatments in boreal aspen stands. Soil Sci Soc Am J 70(4):1189–1199. doi:10.2136/sssaj2005.0186

    Article  CAS  Google Scholar 

  • Bengtsson J, Persson T, Lundkvist H (1997) Long-term effects on logging residue addition and removal on macro arthropods and enchytraeids. J Appl Ecol 34:1014–1022. doi:10.2307/2405290

    Article  Google Scholar 

  • Berglund H, Åmström M (2007) Harvest of logging residues and stumps for bioenergy production—effects soil productivity, carbon budget and species diversity. http://www.balticforest.net

  • Berndes G, Hoogwijk M, van den Broek R (2003) The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenergy 25:1–28. doi:10.1016/S0961-9534(02)00185-X

    Article  Google Scholar 

  • Blandin P, Christophe T, Garay I, Geoffroy JJ (1980) Les Arachnides et Myriapodes prédateurs en fôret tempérée. In: Pesson P (ed) Écologie Forestière. Gauthier-Villars, Paris

    Google Scholar 

  • Buddle CM, Beguin J, Bolduc E, Mercado A, Sackett TE, Selby RD, Varady-Szabo H, Zeran RM (2005) The importance and use of taxon sampling curves for comparative biodiversity research with forest arthropod assemblages. Can Entomol 137:120–127

    Article  Google Scholar 

  • Bultman TL, Uetz GW (1982) Abundance and community structure of forest floor spiders following litter manipulation. Oecologia 55:34–41. doi:10.1007/BF00386715

    Article  Google Scholar 

  • Bultman TL, Uetz GW (1984) Effect of structure and nutritional quality of litter on abundances of litter-dwelling arthropods. Am Midl Nat 111(1):165–172. doi:10.2307/2425555

    Article  Google Scholar 

  • Chen B, Wise DH (1999) Bottom-up limitation of predaceous arthropods in a detritus-based terrestrial food web. Ecology 80(3):761–772

    Article  Google Scholar 

  • Chojnacky DC, Schuler TM (2004) Amounts of down woody materials for mixed-oak forests in Kentucky, Virginia, Tennesse, and North Carolina. SJAF 28(2):113–117

    Google Scholar 

  • Chojnacky DC, Mickler RA, Heath LS, Woodall CW (2004) Estimates of down woody materials in eastern US forests. Environ Manag 33(Suppl1):44–55. doi:10.1007/s00267-003-9116-3

    Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analysis of changes in community structure. Aust J Ecol 18:117–143. doi:10.1111/j.1442-9993.1993.tb00438.x

    Article  Google Scholar 

  • Clarke KR, Green RH (1988) Statistical design and analysis for a “biological effects” study. Mar Biol Prog Ser 46(1–3):213–226. doi:10.3354/meps046213

    Article  Google Scholar 

  • Cook JH, Beyea J, Keeler KH (1991) Potential impacts of biomass production in the United States on biological diversity. Annu Rev Energy Environ 16:401–431. doi:10.1146/annurev.e.g.16.110191.002153

    Article  Google Scholar 

  • Demirbaş A (2004) Bioenergy, global warming, and environmental impacts. Energy Sources 26:225–236. doi:10.1080/00908310490256581

    Article  CAS  Google Scholar 

  • Demirbaş A (2007) Progress and recent trends in biofuels. Prog Energy Combust Sci 33:1–18. doi:10.1016/j.pecs.2006.06.001

    Article  CAS  Google Scholar 

  • Dindal DL (1990) Soil biology guide. John Wiley, New York

    Google Scholar 

  • Enrong Y, Xijua W, Jianjun H (2006) Concept and classification of coarse woody debris in forest ecosystems. Front Biol China 1:76–84

    Google Scholar 

  • Ericsson K, Nilsson LJ (2004) International biofuel trade—a study of the Swedish import. Biomass Bioenergy 26:205–220. doi:10.1016/S0961-9534(03)00122-3

    Article  Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391. doi:10.1046/j.1461-0248.2001.00230.x

    Article  Google Scholar 

  • Gunnarsson B, Nittérus K, Wirdenäs P (2004) Effects of loggin residue removal on ground-active beetles in temperate forests. For Ecol Manag 201:229–239

    Article  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST—palaeontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1):9 pp. http://palaeo-electronica.org/2001_1/past/issue1_01.htm

  • Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SP, Aumen NG, Sedell JR, Lienkaemper GW, Cromack K, Cummins KW (1986) Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res 15:133–302. doi:10.1016/S0065-2504(08)60121-X

    Article  Google Scholar 

  • Jonsell M, Hansson J, Wedmo L (2007) Diversity of saproxylic beetle species in loggin residues in Sweden—comparisons between tree species and diameter. Biol Conserv 138:89–99. doi:10.1016/j.biocon.2007.04.003

    Article  Google Scholar 

  • Kempson D, Lloyd M, Ghelardi R (1963) A new extractor for woodland litter. Pedobiologia 3:1–21

    Google Scholar 

  • Kruys N, Jonsson BG (1999) Fine woody debris is important for species richness on logs in managed boreal spruce forests of northern Sweden. Can J Res 29(8):1295–1299. doi:10.1139/cjfr-29-8-1295

    Article  Google Scholar 

  • Küffer N, Senn-Irlet B (2005) Influence of forest management on the species richness and composition of wood-inhabiting basidiomycetes in Swiss forests. Biodivers Conserv 14:2419–2435. doi:10.1007/s10531-004-0151-z

    Article  Google Scholar 

  • Langellotto GA, Denno RF (2004) Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia 139:1–10. doi:10.1007/s00442-004-1497-3

    Article  PubMed  Google Scholar 

  • Lawrence KL, Wise DH (2000) Spider predation on forest-floor Collembola and evidence for indirect effects on decomposition. Pedobiologia 44:33–39. doi:10.1078/S0031-4056(04)70026-8

    Article  Google Scholar 

  • Lawrence KL, Wise DH (2004) Unexpected indirect effect of spiders on the rate of litter disappearance in a deciduous forest. Pedobiologia 48:149–157. doi:10.1016/j.pedobi.2003.11.001

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. 2° english edition. Elsevier, Oxford

    Google Scholar 

  • Lensing JR, Wise DH (2006) Predicted climate change alters the indirect effect of predators on an ecosystem process. Proc Natl Acad Sci USA 103(42):15502–15505. doi:10.1073/pnas.0607064103

    Article  CAS  PubMed  Google Scholar 

  • Lindner M, Karjalainen T (2007) Carbon inventory methods and carbon mitigation potentials of forests in Europe: a short review of recent progress. Eur J For Res 126:149–156. doi:10.1007/s10342-006-0161-3

    Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell, Oxford

    Google Scholar 

  • Marshall PL, Davis G, LeMay VM (2000) Using line intersect sampling for coarse woody debris. Technical Report TR-003, Research Section, Vancouver Forest Region, British Columbia Ministry of Forests

  • Mead DJ (2005) Forests for energy and the role of planted trees. Crit Rev Plant Sci 24(5–6):406–421. doi:10.1080/07352680500316391

    Google Scholar 

  • Miyashita T, Niwa S (2006) A test for top-down cascade in a detritus-based food web by litter-dwelling web spiders. Ecol Res 21(4):611–615. doi:10.1007/s11284-006-0155-0

    Article  Google Scholar 

  • Nilsson SG, Niklasson M, Hedin M, Aronsson G, Gutowski JM, Linder P, Ljungberg H, Mikusiński G, Ranius T (2003) Erratum to densities of large living and dead trees in old-growth temperate and boreal forests. Ecol Manag 161:189–204 [For Ecol Manag 178:355–370.0]

    Article  Google Scholar 

  • Nittérus K, Gunnarsson B (2006) Effect of microhabitat complexity on the local distribution of Arthropods in clear-cuts. Environ Entomol 35(5):1324–1333. doi:10.1603/0046-225X(2006)35[1324:EOMCOT]2.0.CO;2

    Article  Google Scholar 

  • Nittérus K, Ǻström M, Gunnarsson B (2007) Commercial harvest of loggin residue in clear-cuts affects the diversity and community composition of ground beetles (Coleoptera: Carabidae). Scand J Res 22:231–240. doi:10.1080/02827580701352955

    Article  Google Scholar 

  • Nordén B, Götmark F, Tönnberg M, Ryberg M (2004a) Dead wood in semi-natural temperate broadleaved woodland: contribution of coarse and fine dead wood, attached dead wood and stumps. For Ecol Manag 194:235–248

    Article  Google Scholar 

  • Nordén B, Ryberg M, Götmark F, Olausson B (2004b) Relative importance of coarse and fine woody debris for the diversity of wood-inhabiting fungi in temperate broadleaf forests. Biol Conserv 117:1–10. doi:10.1016/S0006-3207(03)00235-0

    Article  Google Scholar 

  • Norris KC (1999) Quantifying change through time in spider assemblages: sampling methods, indices and sources of error. J Insect Conserv 9:309–325. doi:10.1023/A:1009600813111

    Article  Google Scholar 

  • Olsson BT, Staaf H (1995) Influence of harvesting intensity of loggin residues on ground vegetation in coniferous forests. J Appl Ecol 32:640–654. doi:10.2307/2404659

    Article  Google Scholar 

  • Parikka M (2004) Global biomass fuel resources. Biomass Bioenergy 27:613–620. doi:10.1016/j.biombioe.2003.07.005

    Article  Google Scholar 

  • Pearce JL, Venier LA (2006) The use of ground beetles (Coleoptera: Carabidae) and spiders (Araneae) as bioindicators of sustainable forest management: a review. Ecol Indicators 6(4):780–793. doi:10.1016/j.ecolind.2005.03.005

    Article  Google Scholar 

  • Perry J (2000) A century of forestry at berea college. Berea College Printing Services, Berea, p 17

    Google Scholar 

  • Peterken GF (1996) Natural Woodland: Ecology and conservation in northern temperate regions. Cambridge University Press, Cambridge

    Google Scholar 

  • Proe MF, Griffiths JH, McKay HM (2001) Effect of whole-tree harvesting on microclimate during establishment of second rotation forestry. Agric Meteorol 110:141–154. doi:10.1016/S0168-1923(01)00285-4

    Article  Google Scholar 

  • Puppán D (2002) Environmental evaluation of biofuels. Period Polytech Ser Soc Man Sci 10(1):99–116

    Google Scholar 

  • Quartau JA (2009) Preventive fire procedures in Mediterranean woods are destroying their insect Biodiversity: a plea to the EU Governments. J Insect Conserv (in press)

  • Rudolphi J, Gustafsson L (2005) Effects of forest-fuel harvesting on the amount of deadwood on clear-cuts. Scand J Res 20:235–242. doi:10.1080/02827580510036201

    Article  Google Scholar 

  • Schaefer M (1991) The animal community: diversity and resources. In: Röhrig E, Ulrich B (eds) Ecosystems of the world 7: temperate deciduous forests. Elsevier, Amsterdam, pp 51–120

    Google Scholar 

  • Scheiner SM (2001) MANOVA: multiple response variables and multispecies interactions. In: Scheiner SM, Gurevitch J (eds) Design and analysis of ecological experiments. Oxford University Press, New York

    Google Scholar 

  • Statsoft (2001) Statistica 6.0 (data analysis software system) for Windows. Statsoft, Inc. Tulsa, Oklahoma, USA

    Google Scholar 

  • Stevenson BG, Dindal DL (1982) Effect of leaf shape on forest litter spiders: community organization and microhabitat selection of immature Enoplognatha ovata (Clerck) (Theridiidae). J Arachnol 10:165–178

    Google Scholar 

  • Ubick D, Paquin P, Cushing PE, Roth V (2005) Spiders of North America: an identification manual. American Arachnological Society, USA

    Google Scholar 

  • Uetz GW (1975) Temporal and spatial variation in species diversity of wandering spiders (Araneae) in deciduous forest litter. Environ Entomol 4:719–724

    Google Scholar 

  • Uetz GW (1976) Gradient analysis of spider communities in a streamside forest. Oecologia 22:373–385. doi:10.1007/BF00345314

    Article  Google Scholar 

  • Uetz GW (1977) Coexistence in a guild of wandering spiders. J Anim Ecol 46:531–542. doi:10.2307/3828

    Article  Google Scholar 

  • Uetz GW (1979) The influence of variation in litter habitats on spider communities. Oecologia 40:29–42. doi:10.1007/BF00388808

    Article  Google Scholar 

  • Uetz GW (1991) Habitat structure and spider foraging. In: Bell SS, McCoy ED, Mushinsky HR (eds) Habitat structure: the physical arrangement of objects in space. Chapman and Hall, London

    Google Scholar 

  • Uetz GW, Halaj J, Cady AB (1999) Guild structure of spiders in major crops. J Arachnol 27(1):270–280

    Google Scholar 

  • USDA Soil Conservation Service (1973) Soil survey of Madison county, KY. USDA Soil Conservation Service in cooperation with Kentucky Agricultural Experiment Station, Washington, DC, USA

    Google Scholar 

  • von Ende CN (2001) Repeated-measures analysis: growth and other time-dependent measures. In: Scheiner SM, Gurevitch J (eds) Design and analysis of ecological experiments. Oxford University Press, New York

    Google Scholar 

  • Wagner JD, Toft S, Wise DH (2003) Spatial stratification in litter depth by forest-floor spiders. J Arachnol 31:28–39. doi:10.1636/0161-8202(2003)031[0028:SSILDB]2.0.CO;2

    Article  Google Scholar 

  • Wardle DA (2002) Communities and Ecosytems: Linking the Aboveground and Belowground Components. Princeton University Press, USA

    Google Scholar 

  • Wise DH (2004) Wandering spiders limit densities of a major microbi-detritivore in the forest floor food web. Pedobiologia 48:181–188. doi:10.1016/j.pedobi.2003.12.001

    Article  Google Scholar 

Download references

Acknowledgments

The first author was supported by a grant from the Spanish Ministry of Education and Science. The research was also supported by the Kentucky Agricultural Experiment Station and the Department of Entomology, University of Kentucky; and US National Science Foundation Grant DEB-0735236 to DHW. Berea College generously gave us permission to use the Berea College Forest for the experiment, and the Berea College Forester, John Perry, provided assistance throughout the project. Aintzane Barriuso helped in the field and also made a major contribution by counting the Collembola in our samples. Additional assistance, either in the field or with helpful suggestions on the research, was provided by Klaus Birkhoffer, Mark Bostrom, James Harwood, Erin Hladilek, Janet Lensing, Alvaro Romero, Susan Romero and Marzena Stanska.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Castro.

Appendices

Appendix 1

See Table 3.

Table 3 Densities (individuals m−2) in Kempson samples of macroarthropod and Collembola taxa by sample date

Appendix 2

See Table 4.

Table 4 Numbers (individuals plot−1) of taxa of flying insects caught on sticky traps by sample date

Appendix 3

See Table 5.

Table 5 Spider (Araneae) families, genera and guilds collected from all plots in the Berea College Forest, Kentucky

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castro, A., Wise, D.H. Influence of fine woody debris on spider diversity and community structure in forest leaf litter. Biodivers Conserv 18, 3705–3731 (2009). https://doi.org/10.1007/s10531-009-9674-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-009-9674-7

Keywords

Navigation