Skip to main content
Log in

The importance of host tree age, size and growth rate as determinants of epiphytic lichen diversity in boreal spruce forests

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

The amount of large and old trees has decreased in the boreal forests during the last centuries of forestry. Such trees are important habitats for epiphytic lichens and there is a growing concern for lichen species that are associated with large and old trees. However, only little is known about the relative importance of tree size versus age as determinants of lichen diversity. Here we have determined the size, age and growth rate of 157 Norway spruce trees and recorded the occurrence of epiphytic lichen species on their branches and lower stems. The study includes crustose lichens and was done in two old-growth forests in SE Norway. Tree age and tree size were the parameters that explained the largest part of epiphytic lichen diversity. Only the growth rate of the most recent time period, i.e. 1984–2004, showed a statistically significant relationship to diversity. There was no indication of a stabilising species number with increasing tree age. Slow-growing and old trees were, however, mainly of importance to the lichen species growing on stems, and this set of species were in general adversely affected by a large amount of branches. The opposite was the case for the species that were confined to branches as their diversity increased when the amount of branches increased. Our study adds empirical data to support the importance of large and old trees as bearers of biodiversity in boreal forests. Site preservation and patch retention of groups of old and large trees is recommended as measures to maintain epiphytic lichen diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Armstrong RA (1987) Dispersal in a population of the lichen Hypogymna physodes. Environ Exp Bot 27:357–363. doi:10.1016/0098-8472(87)90046-3

    Article  Google Scholar 

  • Berryman S, McCune B (2006) Estimating epiphytic macrolichen biomass from topography, stand structure and lichen community data. J Veg Sci 17:157–170

    Article  Google Scholar 

  • Cox CB, Moore PD (1993) Biogeography. An ecological and evolutionary approach. Blackwell Scientific Ltd, London

    Google Scholar 

  • Coxson DS, Stevenson SK (2007) Growth rate responses of Lobaria pulmonaria to canopy structure in even-aged and old-growth cedar–hemlock forests of central-interior British Columbia. For Ecol Manage 242:5–16. doi:10.1016/j.foreco.2007.01.031

    Article  Google Scholar 

  • Dettki H, Esseen P-A (1998) Epiphytic macrolichens in managed and natural forest landscapes: a comparison at two spatial scales. Ecography 21:613–624. doi:10.1111/j.1600-0587.1998.tb00554.x

    Article  Google Scholar 

  • Dettki H, Klintberg P, Esseen P-A (2000) Are epiphytic lichens in young forests limited by local dispersal? Ecoscience 7:317–325

    Google Scholar 

  • Esseen P-A, Ericson L, Lindström H, Zackrisson O (1981) Occurrence and ecology of Usnea longissima in Central Sweden. Lichenologist 13:177–190. doi:10.1017/S0024282981000224

    Article  Google Scholar 

  • Flores-Palacios A, García-Franco J (2006) The relationship between tree size and epiphyte species richness: testing four different hypotheses. J Biogeogr 33:323–333. doi:10.1111/j.1365-2699.2005.01382.x

    Article  Google Scholar 

  • Fritz Ö, Gustafsson L, Larsson K (2008) Does forest continuity matter in conservation?–a study of epiphytic kichens and bryophytes in beech forests of southern Sweden. Biol Conserv 141:655–668. doi:10.1016/j.biocon.2007.12.006

    Article  Google Scholar 

  • Fritz Ö, Niklasson M, Churski M (2009) Tree age as a key factor for the conservation of epiphytic lichens and bryophytes in beech forests. Appl Veg Sci 12:93–106. doi:10.1111/j.1654-109X.2009.01007.x

    Article  Google Scholar 

  • Gauslaa Y, Ohlson M, Rolstad J (1998) Fine-scale distribution of the epiphytic lichen Usnea longissima on two even-aged neighbouring Picea abies trees. J Veg Sci 9:95–102. doi:10.2307/3237227

    Article  Google Scholar 

  • Gauslaa Y, Lie M, Solhaug KA, Ohlson M (2006) Growth and ecophysiological acclimation of the foliose lichen Lobaria pulmonaria in forests with contrasting light climate. Oecologia 147:406–416. doi:10.1007/s00442-005-0283-1

    Article  PubMed  Google Scholar 

  • Gauslaa Y, Palmqvist K, Solhaug KA, Holien H, Hilmo O, Nybakken L, Myhre LC, Ohlson M (2007) Growth of epiphytic lichens across climatic and successional gradients. Can J For Res 37:1832–1845. doi:10.1139/X07-048

    Article  Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391. doi:10.1046/j.1461-0248.2001.00230.x

    Article  Google Scholar 

  • Hallingbäck T (1995) Ekologisk katalog över lavar. ArtDatabanken SLU, Uppsala

    Google Scholar 

  • Halonen P, Hyvärinen M, Kauppi M (1991) The epiphytic lichen flora on conifers in relation to climate in the Finnish middle boreal subzone. Lichenologist 23:61–72

    Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning. Springer, Berlin

    Google Scholar 

  • Hazell P, Gustafsson L (1999) Retention of trees at final harvest—evaluation of a conservation technique using epiphytic bryophyte and lichen transplants. Biol Conserv 90:133–142. doi:10.1016/S0006-3207(99)00024-5

    Article  Google Scholar 

  • Hilmo O (1994) Distribution and succession of epiphytic lichens on Picea abies branches in a boreal forest, central Norway. Lichenologist 26:149–169. doi:10.1006/lich.1994.1013

    Article  Google Scholar 

  • Hilmo O, Såstad SM (2001) Colonization of old-forest lichens in a young and an old boreal Picea abies forest: an experimental approach. Biol Conserv 102:251–259. doi:10.1016/S0006-3207(01)00100-8

    Article  Google Scholar 

  • Holien H (1997) The lichen flora on Picea abies in a suboceanic spruce forest area in Central Norway with emphasis on the relationship to site and stand parameters. Nord J Bot 17:55–76. doi:10.1111/j.1756-1051.1997.tb00290.x

    Article  Google Scholar 

  • Holien H (1998) Lichens in spruce forest stands of different successional stages in central Norway with emphasis on diversity and old growth species. Nova Hedwigia 66:283–324

    Google Scholar 

  • Hottola J, Siitonen J (2008) Significance of woodland key habitats for polypore diversity and red-listed species in boreal forests. Biodivers Conserv 17:2559–2577. doi:10.1007/s10531-008-9317-4

    Article  Google Scholar 

  • Huston MA (1994) Biological Diversity. The coexistence of species on changing landscapes. Cambridge Univeristy Press, Cambridge

    Google Scholar 

  • Hyvärinen M, Halonen P, Kauppi M (1992) Influence of stand age and structure on the epiphytic vegetation in the middle-boreal forests of Finland. Lichenologist 24:165–180

    Google Scholar 

  • Johansson P, Rydin H, Thor G (2007) Tree age relationships with epiphytic lichen diversity and lichen life history traits on ash in southern Sweden. Ecoscience 14:81–91. doi:10.2980/1195-6860(2007)14[81:TARWEL]2.0.CO;2

    Article  Google Scholar 

  • Jovan S, McCune B (2004) Regional variation in epiphytic macrolichen communities in northern and central Californian forests. Bryologist 107:328–339. doi:10.1639/0007-2745(2004)107[0328:RVIEMC]2.0.CO;2

    Article  Google Scholar 

  • Junninen K, Penttila R, Martikainen P (2007) Fallen retention aspen trees on clear-cuts can be important habitats for red-listed polypores: a case study in Finland. Biodivers Conserv 16:475–490. doi:10.1007/s10531-005-6227-6

    Article  Google Scholar 

  • Kålås JA, Viken Å, Bakken T (2006) Norsk Rødliste 2006–2006 Norwegian Red List. Artsdatabanken, Norway

    Google Scholar 

  • Kivisto L, Kuusinen M (2000) Edge effects on the epiphytic lichen flora of Picea abies in middle boreal Finland. Lichenologist 32:387–389. doi:10.1006/lich.2000.0282

    Article  Google Scholar 

  • Koch GW, Sillett SC, Jennings GM, Davis SD (2004) The limits to tree height. Nature 428:851–854. doi:10.1038/nature02417

    Article  CAS  PubMed  Google Scholar 

  • Kruys N, Jonsson BG (1997) Insular patterns of calicoid lichens in a boreal old-growth forest-wetland mosaic. Ecography 20:605–613. doi:10.1111/j.1600-0587.1997.tb00429.x

    Article  Google Scholar 

  • Kuusinen M (1996) Epiphyte flora and diversity on basal trunks of six old-growth forest tree species in southern and middle-boreal Finland. Lichenologist 28:443–463. doi:10.1006/lich.1996.0043

    Article  Google Scholar 

  • Löbel S, Snäll T, Rydin H (2006) Species richness patterns and metapopulation processes—evidence from epiphyte communities in boreo-nemoral forests. Ecography 29:169–182. doi:10.1111/j.2006.0906-7590.04348.x

    Article  Google Scholar 

  • Lõhmus P, Rosenwald P, Lõhmus A (2006) Effectiveness of solitary retention trees for conserving epiphytes: differential short-term responses of bryophytes and lichens. Can J For Res 36:1319–1330. doi:10.1139/X06-032

    Article  Google Scholar 

  • Lyon B, Nadkarni NM, North MP (2000) Spatial distribution and succession of epiphytes on Tsuga heterophylla (western hemlock) in an old-growth Douglas-fir forest. Can J Bot 78:957–958. doi:10.1139/cjb-78-7-957

    Article  Google Scholar 

  • MacArthur RH, Wilson EO (1963) An equilibrium theory of insular zoogeography. Evolution Int J Org Evolution 17:373–387. doi:10.2307/2407089

    Google Scholar 

  • Manly BFJ (1997) Randomisations, bootstrap, and Monte Carlo methods in biology. Chapman & Hall, London

    Google Scholar 

  • McCune B, Dey J, Peck J, Heiman K, Will-Wolf S (1997) Regional gradients in lichen communities of the Southeast United States. Bryologist 100:145–158

    Google Scholar 

  • Molinari C, Bradshaw RHW, Risbøl O, Lie M, Ohlson M (2005) Long-term vegetational history of a Picea abies stand in south-eastern Norway: implications for the conservation of biological values. Biol Conserv 126:155–165. doi:10.1016/j.biocon.2005.05.007

    Article  Google Scholar 

  • Nascimbene J, Marini L, Caniglia G, Cester D, Nimis PL (2008) Lichen diversity on stumps in relation to wood decay in subalpine forests of Northern Italy. Biodivers Conserv 17:2661–2670. doi:10.1007/s10531-008-9344-1

    Article  Google Scholar 

  • Neitlich PN, McCune B (1997) Hotspots of epiphytic lichen diversity in two young managed forests. Conserv Biol 11:172–182. doi:10.1046/j.1523-1739.1997.95492.x

    Article  Google Scholar 

  • Ohlson M, Söderström L, Hörnberg G, Zackrisson O, Hermansson J (1997) Habitat qualities versus long-term continuity as determinants of biodiversity in boreal old-growth swamp forests. Biol Conserv 81:221–231. doi:10.1016/S0006-3207(97)00001-3

    Article  Google Scholar 

  • Peck JE (1997) Remnant trees and canopy lichen communities in western Oregon: a retrospective approach. Ecol Appl 7:1181–1187. doi:10.1890/1051-0761(1997)007[1181:RTACLC]2.0.CO;2

    Article  Google Scholar 

  • Santesson R, Moberg R, Nordin A, Tønsberg T, Vitikainen O (2004) Lichen-forming and lichenicolous fungi of Fennoscandia. Museum of Evolution. Uppsala University, Uppsala

    Google Scholar 

  • Schweingruber FH (1988) Tree rings. Basics and applications of dendrochronology. Kluwer, Dordrecht

    Google Scholar 

  • Sillett SC, McCune B, Peck JE, Rambo TR, Ruchty A (2000) Dispersal limitations of epiphytic lichens result in species dependent on old-growth forests. Ecol Appl 10:789–799. doi:10.1890/1051-0761(2000)010[0789:DLOELR]2.0.CO;2

    Article  Google Scholar 

  • Southwood TRE, Kennedy CEJ (1983) Trees as islands. Oikos 41:359–371. doi:10.2307/3544094

    Article  Google Scholar 

  • Thomas SC (1996) Asymptotic height as a predictor of growth and allometric characteristics Malaysian rain forest trees. Am J Bot 83:556–566. doi:10.2307/2445913

    Article  Google Scholar 

  • Tibell L (1999) Calicioid lichens and fungi. In: Ahti T, Jørgensen PM, Kristinsson H, Moberg R, Søchting U, Thor G (eds) Nordic lichen Flora. Volume 1. Introductory Parts. Calicioid Lichens and Fungi. Nordic Lichen Society, Uddevalla, pp 20–94

    Google Scholar 

  • Tønsberg T, Gauslaa Y, Haugan R, Holien H, Timdal E (1996) The threatened macrolichens of Norway—1995. Sommerfeltia 23:1–283

    Google Scholar 

  • Will-Wolf S, Geiser L, Neitlich P, Reis A (2006) Forest lichen communities and environment—how consistent are relationships across scales? J Veg Sci 17:171–184

    Google Scholar 

Download references

Acknowledgments

This research was financed by the Research Council of Norway (NFR). Yngvar Gauslaa and an anonymous reviewer have contributed valuable comments on the manuscript. We thank Fritzøe skoger for giving access to the study sites and for all kind help with organising practicalities related to the field work. Thanks to the research assistant Steen Ravn Andersen for persistence in coring trees and Kari-Anne Taije for volunteering as a field assistant and providing good company in many long hours in the forest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John-Arvid Grytnes.

Appendix

Appendix

See Table 6.

Table 6 Recorded species and the corresponding frequency of species occurrences

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lie, M.H., Arup, U., Grytnes, JA. et al. The importance of host tree age, size and growth rate as determinants of epiphytic lichen diversity in boreal spruce forests. Biodivers Conserv 18, 3579–3596 (2009). https://doi.org/10.1007/s10531-009-9661-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-009-9661-z

Keywords

Navigation