Skip to main content

Advertisement

Log in

A multiple approach for the evaluation of the spatial distribution and dynamics of a forest habitat: the case of Apennine beech forests with Taxus baccata and Ilex aquifolium

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

An approach integrating phytosociological and stand structure surveys with the predictive modelling of species distribution was applied to analyse the spatial distribution and dynamics of the Apennine beech forests with Taxus and Ilex, a high conservation priority forest habitat in Europe. The homogeneity of the habitat was tested trough a Mann–Whitney test between beech woods with Taxus and those with Ilex with respect to climatic, topographic, structural and environmental parameters: the former have proven to be more microthermic, mesophilous and characterised by a closer canopy. Five statistical models were compared to analyse the relationship between bioclimatic parameters and Taxus and Ilex spatial distribution: Regression Tree Analysis, the most efficient model, has shown that the distribution of Taxus is influenced by precipitation variables, while Ilex is mainly influenced by temperature variables. This model highlighted that Ilex has a potential area that surrounds, at lower altitudes, that of Taxus. A stepwise multiple regression analysis has been applied to identify the factors influencing the regeneration of the two species: beside climatic parameters, Taxus regeneration is negatively influenced by soil nitrate concentration (an indicator of livestock disturbance) while Ilex is negatively influenced by beech forest cover. Traditional management practices seem to have an effect on the regeneration of the two species: frequent cuts favour the regeneration of Ilex, reducing the forest cover and allowing more light penetration, while Taxus, less resistant to grazing livestock, is confined to more inaccessible places. The multiple approach has proven to be useful for the elaboration of two differentiated conservation strategies for the two beech forest types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Attorre F, Alfò M, De Sanctis M et al (2007a) Comparison of interpolation methods for mapping climatic and bioclimatic variables at regional scale. Int J Climatol 27(13):1825–1843. doi:10.1002/joc.1495

    Article  Google Scholar 

  • Attorre F, Francesconi F, Taleb N et al (2007b) Will dragonblood survive the next period of climate change? Current and future potential distribution of Dracaena cinnabari (Socotra, Yemen). Biol Conserv 138:430–439. doi:10.1016/j.biocon.2007.05.009

    Article  Google Scholar 

  • Attorre F, Francesconi F, Scarnati L et al (2008) Predicting the effect of climate change on tree species abundance and distribution at a regional scale. iForest 1:132–139. doi:10.3832/ifor0467-0010132

    Article  Google Scholar 

  • Benito Garzòn M, Sánchez de Dios R, Sainz Ollero H (2008) Effects of climate change on the distribution of Iberian tree species. Appl Veg Sci 11:169–178. doi:10.3170/2008-7-18348

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc [Ser A] 57:289–300

    Google Scholar 

  • Bianchi L, Paci M (2008) Dinamica evolutiva e gestione delle abetine toscane: sintesi di quarant’anni di ricerche. Forest@ 5(1):122–130. doi:10.3832/efor0517-0050122

    Article  Google Scholar 

  • Biggs DB, de Ville B, Suen E (1991) A method of choosing multiway partitions for classification a decision trees. J Appl Stat 18:49–62. doi:10.1080/02664769100000005

    Article  Google Scholar 

  • Breiman L, Friedman JH, Olshen RA et al (1984) Classification and regression trees. Wiley, New York

    Google Scholar 

  • Closset-Kopp D, Schnitzler A, Aran D (2006) Dynamics in natural mixed-beech forest of the Upper Vosges. Biodiv Conserv 15:1063–1093. doi:10.1007/s10531-004-1874-6

    Article  Google Scholar 

  • Dzwonko Z (2001) Assessment of light and soil conditions in ancient and recent woodlands by Ellenberg indicator values. J Appl Ecol 38:942–951. doi:10.1046/j.1365-2664.2001.00649.x

    Article  CAS  Google Scholar 

  • Ellenberg H, Weber HE, Duèll R et al (1991) Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18

  • Engler R, Guisan A, Rechsteiner L (2004) An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. J Appl Ecol 41:263–274. doi:10.1111/j.0021-8901.2004.00881.x

    Article  Google Scholar 

  • Farcomeni A (2007) A Review of modern multiple hypothesis testing, with particular attention to the false discovery proportion. Stat Methods Med Res. doi:10.1177/0962280206079046

  • Feliziani R (2006) Forest management in protected areas in Italy. In: Gafta D, Akeroyd J (eds) Nature conservation. Springer, Berlin, pp 380–391

    Chapter  Google Scholar 

  • Friedman J (1991) Multivariate adaptive regression splines. Ann Stat 19:1–141. doi:10.1214/aos/1176347963

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186. doi:10.1016/S0304-3800(00)00354-9

    Article  Google Scholar 

  • Hastie T, Tibshirani R (1990) Generalized additive models. Chapman and Hall, New York

    Google Scholar 

  • Hidalgo PJ, Marìn MJ, Quiijada J et al (2008) A spatial distribution model of cork oak (Quercus suber) in southwestern Spain: a suitable tool for reforestation. For Ecol Manag 255:25–34. doi:10.1016/j.foreco.2007.07.012

    Article  Google Scholar 

  • Huntley B, Berry PM, Cramer W et al (1995) Modelling present and potential future ranges of some European higher plants using climate response. J Biogeogr 22:967–1001. doi:10.2307/2845830

    Article  Google Scholar 

  • Iverson LR, Prasad AM (1998) Predicting abundance for 80 tree species following climate change in the Estern United States. Ecol Monogr 68:465–485. doi:10.1890/0012-9615(1998)068[0465:PAOTSF]2.0.CO;2

    Article  Google Scholar 

  • Iverson LR, Prasad AM (2002) Potential redistribution of tree species habitat under five climate change scenarios in the Eastern United States. For Ecol Manag 155:205–222. doi:10.1016/S0378-1127(01)00559-X

    Article  Google Scholar 

  • Iverson LR, Prasad AM, Schwartz MK (1999) Modelling potential future individual tree species distributions in the Eastern United States under a climate change scenario: a case study with Pinus virginiana. Ecol Model 115:77–93. doi:10.1016/S0304-3800(98)00200-2

    Article  Google Scholar 

  • Magri D, Vendramin GG, Comps B et al (2006) A new scenario for the Quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytol 171:199–221. doi:10.1111/j.1469-8137.2006.01740.x

    Article  PubMed  CAS  Google Scholar 

  • Naaf T, Wulf M (2007) Effects of gap size, light and herbivory on the herb layer vegetation in European beech forest gaps. For Ecol Manag 244:141–149. doi:10.1016/j.foreco.2007.04.020

    Article  Google Scholar 

  • Neumann M, Starlinger F (2001) The significance of different indices for stand structure and diversity in forests. For Ecol Manag 145:91–106. doi:10.1016/S0378-1127(00)00577-6

    Article  Google Scholar 

  • Paule L, Gömöry D, Longauer R (1993) Present distribution and ecological conditions of the English yew (Taxus baccata L.) in Europe. In: International Yew Resources Conference: Yew (Taxus) Conservation Biology and Interactions, Berkely, CA, USA, pp 189–196

  • Pignatti S (2005) Bioindicator values of vascular plants of the Flora of Italy. Braun-Blanquetia 39:1–97

    Google Scholar 

  • R Development Core Team (2007) R A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Segurado P, Araùjo MB (2004) An evaluation of methods for modelling species distributions. J Biogeogr 31:1555–1568. doi:10.1111/j.1365-2699.2004.01076

    Article  Google Scholar 

  • Siniscalco C, Montacchini F (1989) Taxus baccata e Ilex aquifolium in Piemonte. Alliona 29:37–45

    Google Scholar 

  • Smola AJ, Scholkopf B (2004) A tutorial on support vector regression. Stat Comput 14:199–222. doi:10.1023/B:STCO.0000035301.49549.88

    Article  Google Scholar 

  • Spada F (2001) Considerazioni sulla fitogeografia e sulla genesi delle comunità a Taxus baccata L. in Europa. In: AA.VV., Il Tasso, un albero da conoscere e da conservare. COGESTRE Edizioni, Penne (PE), pp 13–34

  • Thomas PA, Polwart A (2003) Taxus baccata L. J Ecol 91:489–524. doi:10.1046/j.1365-2745.2003.00783.x

    Article  Google Scholar 

  • Thuiller W (2003) BIOMOD: optimizing predictions of species distribution and projecting potential future shifts under global change. Glob Change Biol 9:1353–1362. doi:10.1046/j.1365-2486.2003.00666.x

    Article  Google Scholar 

  • Thuiller W, Vayreda J, Pino J et al (2003) Large-scale environmental correlates of forest tree distributions in Catalonia (NE Spain). Glob Ecol Biogeogr 12:313–325. doi:10.1046/j.1466-822X.2003.00033.x

    Article  Google Scholar 

  • Vayssières MP, Plant RE, Allen-Diaz BH (2000) Classification trees: an alternative non-parametric approach for predicting species distributions. J Veg Sci 11:679–694. doi:10.2307/3236575

    Article  Google Scholar 

  • Weiner J, Solbrig OT (1984) The meaning and measurement of size hierarchies in plant populations. Oecologia 61:334–336. doi:10.1007/BF00379630

    Article  Google Scholar 

  • Zaniewski AE, Lehmann A, Overton J (2002) Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns. Ecol Model 157:261–280. doi:10.1016/S0304-3800(02)00199-0

    Article  Google Scholar 

Download references

Acknowledgements

Work carried out in the framework of the Biodiversity Observatory of the Lazio Region (Italy) with the support of the Parks Lazio Agency. We are grateful to the staff of the Protected Areas who helped us during the field work for the sample areas identification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Attorre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scarnati, L., Attorre, F., De Sanctis, M. et al. A multiple approach for the evaluation of the spatial distribution and dynamics of a forest habitat: the case of Apennine beech forests with Taxus baccata and Ilex aquifolium . Biodivers Conserv 18, 3099–3113 (2009). https://doi.org/10.1007/s10531-009-9629-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-009-9629-z

Keywords

Navigation