Skip to main content

Advertisement

Log in

Comparing alternative systematic conservation planning strategies against a politically driven conservation plan

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Decisions regarding the level of detail included in conservation planning and the importance given to feasibility considerations can greatly influence management in terms of total area required, achievement of conservation targets and costs. This work had two main objectives: (1) to compare priority sites proposed by the Chilean commission for the environment in a politically driven process to the results of alternative systematic conservation planning scenarios; and (2) to compare the efficacy of systematic conservation planning based on different types of conservation targets (forest types and bird species) and minimum area thresholds. To address these issues, we used vegetation cover as well as field data on forest birds in central Chile. Bird species distributions were modeled using a variety of climatic and environmental layers, allowing for the integration of environmental heterogeneity into the planning process. We then ran several conservation planning scenarios considering conservation targets based on vegetation types alone, birds alone, or a combination of vegetation and birds. Collectively these results show that conservation planning results differ significantly when considering birds or vegetation types, and that minimum area requirements for each conservation feature has a great influence on the final results. Moreover, important conservation sites are not represented in the current government plan, and these sites are related to the small representation of rare vegetation types. This study suggests that using appropriate minimum area requirements can greatly affect the results of a conservation planning exercise and therefore represents a key knowledge gap in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Armesto JJ, Rozzi R, Smith-Ramirez C, Arroyo MTK (1998) Ecology—conservation targets in South American temperate forests. Science 282:1271–1272. doi:10.1126/science.282.5392.1271

    Article  Google Scholar 

  • Ball IR, Possingham HP (2000) Marxan (v1.8.2): marine reserve design using spatially explicit annealing, Great Barrier Reaf Marine Park authority, Townsville. Available online as of April 2004 at www.ecology.uq.edu.au/marxan.htm

  • Balmford A (2003) Conservation planning in the real world: South Africa shows the way. Trends Ecol Evol 18:435–438. doi:10.1016/S0169-5347(03)00217-9

    Article  Google Scholar 

  • Barry S, Elith J (2006) Error and uncertainty in habitat models. J Appl Ecol 43:413–423. doi:10.1111/j.1365-2664.2006.01136.x

    Article  Google Scholar 

  • Brooks TM, Mittermeier RA, da Fonseca GAB, Gerlach J, Hoffmann M, Lamoreux JF, Mittermeier CG, Pilgrim JD, Rodrigues ASL (2006) Global biodiversity conservation priorities. Science 313:58–61. doi:10.1126/science.1127609

    Article  PubMed  CAS  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Cofre HL, Bohning-Gaese K, Marquet PA (2007) Rarity in Chilean forest birds: which ecological and life-history traits matter? Divers Distrib 13:203–212. doi:10.1111/j.1472-4642.2006.00312.x

    Article  Google Scholar 

  • CONAF-CONAMA-BIRF (1999) Catastro y Evaluación de recursos vegetacionales nativos de Chile, Santiago

  • CONAMA (2005) Plan de acción de País para la implementación de la Estrategia Nacional de Biodiversidad 2004–2015. Propuestas de País para avanzar mancomunalmente en la Conservación y Uso Sostenible del Patrimonio Natural, Comision Nacional del Medio Ambiente, Gobierno de Chile, Santiago

  • Cornelius C, Cofre H, Marquet PA (2000) Effects of habitat fragmentation on bird species in a relict temperate forest in semiarid Chile. Conserv Biol 14:534–543. doi:10.1046/j.1523-1739.2000.98409.x

    Article  Google Scholar 

  • Diaz IA, Sarmiento C, Ulloa L, Moreira R, Navia R, Veliz E, Pena C (2002) Terrestrial vertebrates of the Rio Clarillo National Reserve, central Chile: representation and conservation. Rev Chil Hist Nat 75:433–448

    Google Scholar 

  • Echeverria C, Coomes D, Salas J, Rey-Benayas JM, Lara A, Newton A (2006) Rapid deforestation and fragmentation of Chilean Temperate Forests. Biol Conserv 130:481–494. doi:10.1016/j.biocon.2006.01.017

    Article  Google Scholar 

  • Estades CF (1997) Bird–habitat relationships in a vegetational gradient in the Andes of central Chile. Condor 99:719–727. doi:10.2307/1370483

    Article  Google Scholar 

  • Feria TP, Peterson AT (2002) Prediction of bird community composition based on point-occurrence data and inferential algorithms: a valuable tool in biodiversity assessments. Divers Distrib 8:49–56. doi:10.1046/j.1472-4642.2002.00127.x

    Article  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49. doi:10.1017/S0376892997000088

    Article  Google Scholar 

  • Fjeldsa J (2007a) How broad-scale studies of patterns and processes can serve to guide conservation planning in Africa. Conserv Biol 21:659–667. doi:10.1111/j.1523-1739.2007.00706.x

    Article  PubMed  Google Scholar 

  • Fjeldsa J (2007b) The relationship between biodiversity and population centres: the high Andes region as an example. Biodivers Conserv 16:2739–2751. doi:10.1007/s10531-007-9204-4

    Article  Google Scholar 

  • Fjeldsa J, Krabbe N (1990) Birds of the High Andes: a manual of the birds of the temperate zone of the Andes and Patagonia, South America. Apollo Books, Copenhagen

    Google Scholar 

  • Haining R (2003) Spatial data analysis: theory and practice. Cambridge University Press, Cambridge

    Google Scholar 

  • Hastie T, Tibshirani RJ (1990) Generalized additive models. Chapman and Hall/CRC, London

    Google Scholar 

  • Hess GR, Koch FH, Rubino MJ, Eschelbach KA, Drew CA, Favreau JM (2006) Comparing the potential effectiveness of conservation planning approaches in central North Carolina, USA. Biol Conserv 128:358–368. doi:10.1016/j.biocon.2005.10.003

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi:10.1002/joc.1276

    Article  Google Scholar 

  • Jiménez JE (2000) Effect of sample size, plot size, and counting time on estimates of avian diversity and abundance in a Chilean rainforest. J Field Ornithol 71:66–87

    Google Scholar 

  • Kadmon R, Farber O, Danin A (2004) Effect of roadside bias on the accuracy of predictive maps produced by bioclimatic models. Ecol Appl 14:401–413. doi:10.1890/02-5364

    Article  Google Scholar 

  • Kelt DA (2001) Differential effects of habitat fragmentation on birds and mammals in Valdivian temperate rainforests. Rev Chil Hist Nat 74:769–777

    Article  Google Scholar 

  • Knight AT, Cowling RM (2007) Embracing opportunism in the selection of priority conservation areas. Conserv Biol 21:1124–1126. doi:10.1111/j.1523-1739.2007.00690.x

    Article  PubMed  Google Scholar 

  • Knight AT, Smith RJ, Cowling RM, Desmet PG, Faith DP, Ferrier S, Gelderblom CM, Grantham H, Lombard AT, Maze K, Nel JL, Parrish JD, Pence GQK, Possingham HP, Reyers B, Rouget M, Roux D, Wilson KA (2007) Improving the key biodiversity areas approach for effective conservation planning. Bioscience 57:256–261. doi:10.1641/B570309

    Article  Google Scholar 

  • Lara A, Donoso C, Aravena JC (1996) La conservación del bosque nativo de Chile: problemas y desafíos. In: Armesto JJ, Villagrán C, Arroyo MK (eds) Ecología de los bosques nativos de Chile. Editorial Universitaria, Santiago, pp 335–362

    Google Scholar 

  • Larsen FW, Bladt J, Rahbek C (2007) Improving the performance of indicator groups for the identification of important areas for species conservation. Conserv Biol 21:731–740. doi:10.1111/j.1523-1739.2007.00658.x

    Article  PubMed  Google Scholar 

  • Latimer AM, Wu S, Gelfand AE, Silander JA (2006) Building statistical models to analyze species distributions. Ecol Appl 16:33–50. doi:10.1890/04-0609

    Article  PubMed  Google Scholar 

  • Loiselle BA, Jorgensen PM, Consiglio T, Jimenez I, Blake JG, Lohmann LG, Montiel OM (2008) Predicting species distributions from herbarium collections: does climate bias in collection sampling influence model outcomes? J Biogeogr 35:105–116

    Google Scholar 

  • Lombard AT, Cowling RM, Pressey RL, Rebelo AG (2003) Effectiveness of land classes as surrogates for species in conservation planning for the Cape Floristic Region. Biol Conserv 112:45–62. doi:10.1016/S0006-3207(02)00422-6

    Article  Google Scholar 

  • Meynard CN, Quinn JF (2008) Bird metacommunities in the temperate forests of South America: direct and indirect effects of vegetation structure, area and climate. Ecology 89:981–990. doi:10.1890/07-0350.1

    Article  PubMed  Google Scholar 

  • Meynard CN, Samaniego H, Marquet PA (2004) Biogeografìa de Aves Rapaces de Chile. In: Muñoz A, Rau J, Yáñez J (eds) Aves Rapaces de Chile. CEA Ediciones, Santiago, pp 129–144

    Google Scholar 

  • Pauchard A, Villarroel P (2002) Protected areas in Chile: history, current status, and challenges. Nat Areas J 22:318–330

    Google Scholar 

  • Possingham HP, Ball IR, Andelman S (2000) Mathematical methods for identifying representative reserve networks. In: Ferson S, Burgman M (eds) Quantitative methods for conservation biology. Springer, New York

    Google Scholar 

  • Prendergast JR, Quinn RM, Lawton JH, Eversham BC, Gibbons DW (1993) Rare species, the coincidence of diversity hotspots and conservation strategies. Nature 365:335–337. doi:10.1038/365335a0

    Article  Google Scholar 

  • Pressey RL (2004) Conservation planning and biodiversity: assembling the best data for the job. Conserv Biol 18:1677–1681. doi:10.1111/j.1523-1739.2004.00434.x

    Article  Google Scholar 

  • Pressey RL, Cabeza M, Watts ME, Cowling RM, Wilson KA (2007) Conservation planning in a changing world. Trends Ecol Evol 22:583–592. doi:10.1016/j.tree.2007.10.001

    Article  PubMed  Google Scholar 

  • Raphael MG, Molina R (2007) Conservation of rare or little known species. Island Press, Washington, DC

    Google Scholar 

  • R-Development-Core-Team (2005) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org

  • Reid S, Cornelius C, Barbosa O, Meynard C, Silva-Garcia C, Marquet PA (2002) Conservation of temperate forest birds in Chile: implications from the study of an isolated forest relict. Biodivers Conserv 11:1975–1990. doi:10.1023/A:1020838610330

    Article  Google Scholar 

  • Rodrigues ASL, Akcakaya HR, Andelman SJ, Bakarr MI, Boitani L, Brooks TM, Chanson JS, Fishpool LDC, Da Fonseca GAB, Gaston KJ, Hoffmann M, Marquet PA, Pilgrim JD, Pressey RL, Schipper J, Sechrest W, Stuart SN, Underhill LG, Waller RW, Watts MEJ, Yan X (2004) Global gap analysis: priority regions for expanding the global protected-area network. Bioscience 54:1092–1100. doi:10.1641/0006-3568(2004)054[1092:GGAPRF]2.0.CO;2

    Article  Google Scholar 

  • Rozzi R, Armesto JJ, Correa A, TorresMura JC, Sallaberry M (1996a) Avifauna of primary temperate forests of uninhabited islands of Chiloe Archipelago, Chile. Rev Chil Hist Nat 69:125–139

    Google Scholar 

  • Rozzi R, Martínez D, Willson MF, Sabag C (1996b) Avifauna de los bosques templados de Sudamérica. In: Armesto JJ, Villagrán C, Arroyo MK (eds) Ecología de los bosques nativos de Chile. Editorial Universitaria, Santiago, pp 135–152

    Google Scholar 

  • Scott JM, Davis F, Csuti B, Noss R, Butterfield B, Groves C, Anderson H, Caicco S, Derchia F, Edwards TC, Ulliman J, Wright RG (1993) Gap analysis—a geographic approach to protection of biological diversity. Wildl Monogr 123:1–41

    Google Scholar 

  • Shriner SA, Wilson KR, Flather CH (2006) Reserve networks based on richness hotspots and representation vary with scale. Ecol Appl 16:1660–1673. doi:10.1890/1051-0761(2006)016[1660:RNBORH]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Solano E, Feria TP (2007) Ecological niche modeling and geographic distribution of the genus Polianthes L. (Agavaceae) in Mexico: using niche modeling to improve assessments of risk status. Biodivers Conserv 16:1885–1900. doi:10.1007/s10531-006-9091-0

    Article  Google Scholar 

  • Soutullo A, Gudynas E (2006) How effective is the MERCOSUR’s network of protected areas in representing South America’s ecoregions? Oryx 40:112–116. doi:10.1017/S0030605306000020

    Article  Google Scholar 

  • Steel RGD, Torrie JH, Dickey DA (1997) Principles and procedures of statistics: a biometric approach. McGraw-Hill, USA

    Google Scholar 

  • Tognelli MF, Silva-Garcia C, Labra FA, Marquet PA (2005) Priority areas for the conservation of coastal marine vertebrates in Chile. Biol Conserv 126:420–428. doi:10.1016/j.biocon.2005.06.021

    Article  Google Scholar 

  • Tognelli MF, de Arellano PIR, Marquet PA (2008) How well do the existing and proposed reserve networks represent vertebrate species in Chile? Divers Distrib 14:148–158. doi:10.1111/j.1472-4642.2007.00437.x

    Article  Google Scholar 

  • Vuilleumier F (1985) Forest birds of Patagonia. Ornithol Monogr 36:255–304

    Google Scholar 

  • Wessels KJ, Van Jaarsveld AS, Grimbeek JD, Van der Linde MJ (1998) An evaluation of the gradsect biological survey method. Biodivers Conserv 7:1093–1121. doi:10.1023/A:1008899802456

    Article  Google Scholar 

  • Wilson K, Newton A, Echeverria C, Weston C, Burgman M (2005a) A vulnerability analysis of the temperate forests of south central Chile. Biol Conserv 122:9–21. doi:10.1016/j.biocon.2004.06.015

    Article  Google Scholar 

  • Wilson KA, Westphal MI, Possingham HP, Elith J (2005b) Sensitivity of conservation planning to different approaches to using predicted species distribution data. Biol Conserv 122:99–112. doi:10.1016/j.biocon.2004.07.004

    Article  Google Scholar 

  • Wilson KA, Underwood EC, Morrison SA, Klausmeyer KR, Murdoch WW, Reyers B, Wardell-Johnson G, Marquet PA, Rundel PW, McBride MF, Pressey RL, Bode M, Hoekstra JM, Andelman S, Looker M, Rondinini C, Kareiva P, Shaw MR, Possingham HP (2007) Conserving biodiversity efficiently: what to do, where, and when. PLoS Biol 5:1850–1861. doi:10.1371/journal.pbio.0050223

    Article  CAS  Google Scholar 

  • Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14:763–773. doi:10.1111/j.1472-4642.2008.00482.x

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by a Rufford Small Grant, a Jastro Shield fellowship, the US National Biological Information Infrastructure program, a Fulbright fellowship to C. N. M. and the Iniciativa Científica Milenio (P04-065-F) of the government of Chile. We thank the CONAF for providing all the necessary permits, and the hospitality of all the park rangers. Field assistance was provided by Ana María Venegas, María Angélica Vukasovic, Erik Inestroza and Erin Espeland. Art Shapiro, Steve Greco and an anonymous reviewer provided useful comments in early versions of this manuscript, Pablo A. Marquet provided useful discussions regarding conservation in Chile. To all we are grateful. This is PRBO contribution #1663 and ISEM contribution #2009-012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine N. Meynard.

Appendices

Appendix 1

See Table 3.

Table 3 Summary of general sampling sites characteristics with respect to the variables used as predictors in the species distribution models

Appendix 2

See Table 4.

Table 4 Factor loadings for each environmental principal component axis used in the modeling process

Appendix 3

See Table 5.

Table 5 Additional performance measures for occurrence models

Appendix 4

See Table 6.

Table 6 Area required for each conservation strategy

Appendix 5

See Table 7.

Table 7 Percentage of area of each species habitat (according to the species distribution models) within each protection category (SNASPE or CONAMA sites) and in the best solution for each of the eight conservation scenarios

Appendix 6

See Table 8.

Table 8 Percentage of area of each vegetation type within each protection category (SNASPE or CONAMA sites) and in the best solution for each of the eight conservation experiments

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meynard, C.N., Howell, C.A. & Quinn, J.F. Comparing alternative systematic conservation planning strategies against a politically driven conservation plan. Biodivers Conserv 18, 3061–3083 (2009). https://doi.org/10.1007/s10531-009-9625-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-009-9625-3

Keywords

Navigation