Skip to main content

Advertisement

Log in

Structure of vegetation patches in northwestern Patagonia, Argentina

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Vegetation of arid and semiarid environments has in general a patchy distribution. Our objective was to (a) determine several qualitative and quantitative analytical characteristics of vegetation patches in an arid zone of Patagonia, Argentina, and (b) investigate relationships between them. Annual precipitation in this area was 200 mm during 1999–2005. Eight transects involving ten patches each were studied within a 15 × 15 km area. Mean (±1 SE) values (n = 80) in the vegetation patches were 315 ± 25 and 207 ± 16 cm for the greatest and lowest patch diameter, respectively; 23 ± 2 cm for mound height; 113 ± 12 cm for maximum vegetation height; and 170 ± 18 cm and 58 ± 2% for distance to the next vegetation patch and vegetation patch cover within a transect, respectively. Correlations between greatest and lowest diameters, mound height, maximum plant height and distance to the closest vegetation patch were all significant (P < 0.01; n = 80). In all vegetation patches, the greatest and lowest frequencies were found for the grass Stipa spp. (71.2%) and the shrub Grindelia chiloensis (Cornel.) Cabrera (12.5%). Stipa spp. and the shrub Atriplex lampa (Moq.) D. Dietr. showed the highest simultaneous frequency (50%). A reasonable association among species (>45%) was found for Stipa spp., Atriplex lampa and the shrubs Larrea divaricata Cav., Lycium chilense Miers ex Bertero and Junellia ligustrina (Lag.) Moldenke. Larrea divaricata and Atriplex lampa contributed more than 84% of the total patch standing crop (5,777 ± 435 g). Average patch size and specific diversity were 5.93 ± 0.33 m2 and 1.31 ± 0.11, respectively. Aboveground standing crop of the two dominant shrubs decreased as plant species diversity increased (P < 0.05). Conservation of vegetation patches is crucial to prevent increased soil erosion and desertification in the study ecological system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aarssen LW, Turkington R (1985) Vegetation dynamics and neighbor associations in pasture-community evolution. J Ecol 73:585–603. doi:10.2307/2260496

    Article  Google Scholar 

  • Aguiar MR, Sala OE (1997) Seed distribution constrains the dynamics of the Patagonian steppe. Ecology 78:93–100

    Google Scholar 

  • Ares JO, Beeskow AM, Bertiller MB, Rostagno CM, Irisarri MP, Anchorena J, Defossé GE, Merino CA (1990) Structural and dynamic characteristics of overgrazed grasslands of northern Patagonia. In: Breymeyer A (ed) Managed grasslands: regional studies. Elsevier, Amsterdam, pp 149–175

    Google Scholar 

  • Barbour MG (1969) Age and space distribution of the desert shrub Larrea divaricata. Ecology 50(4):679–685. doi:10.2307/1936259

    Article  Google Scholar 

  • Basanta M, Díaz Vizcaíno E, Casal M, Morey M (1989) Diversity measurements in shrubland communities of Galicia (NW Spain). Vegetatio 82:105–112. doi:10.1007/BF00045024

    Article  Google Scholar 

  • Bates JD, Miller RF, Svejcar TJ (2000) Understory dynamics in cut and uncut western juniper woodlands. J Range Manag 53:119–126. doi:10.2307/4003402

    Article  Google Scholar 

  • Bertiller MB, Bisigato AJ, Carrera AC, del Valle HF (2004) Estructura de la vegetación y funcionamiento de los ecosistemas del Monte chubutense. Bol Soc Arg Bot 39:139–158

    Google Scholar 

  • Bisigato AJ, Bertiller MB (1997) Grazing effects on patchy dryland vegetation in northern Patagonia. J Arid Environ 36:639–653. doi:10.1006/jare.1996.0247

    Article  Google Scholar 

  • Black CA, Evans DD, Ensminger LE, White JL, Clark FE (1965) Methods of soil analysis. Part 1. Physical and mineralogical properties including statistics of measurement and sampling. American Society of Agronomy No. 9. Inc. Publisher, Madison

    Google Scholar 

  • Bonvissuto GL (2006) Establecimiento de plántulas de gramíneas y arbustos dentro y entre isletas de vegetación en el Monte Austral Neuquino. Doctoral thesis, Universidad Nacional del Sur, Bahía Blanca

  • Bonvissuto GL, Busso CA (2006) Ascenso hidráulico en y entre isletas de vegetación en la zona árida de Argentina. Phyton Int. J Exp Bot 75:55–70

    Google Scholar 

  • Bonvissuto GL, Busso CA (2007a) Seed rain in and between vegetation patches in arid Patagonia, Argentina. Phyton Int. J Exp Bot 76:47–59

    Google Scholar 

  • Bonvissuto GL, Busso CA (2007b) Germination of grasses and shrubs under various water stress and temperature conditions. Phyton Int. J Exp Bot 76:119–131

    Google Scholar 

  • Bozzo JA, Beasom SL, Fulbright TF (1992) Vegetation responses to two brush management practices in south Texas. J Range Manag 45:170–175. doi:10.2307/4002778

    Article  Google Scholar 

  • Brisson J, Reynolds JF (1994) The effect of neighbors on root distribution in a creosotebush (Larrea tridentata) population. Ecology 75:1693–1702. doi:10.2307/1939629

    Article  Google Scholar 

  • Burkhardt JW, Tisdale EW (1969) Nature and successional status of western juniper vegetation in Idaho. J Range Manag 22:264–270. doi:10.2307/3895930

    Article  Google Scholar 

  • Busso CA (1997) Towards an increased and sustainable production in semiarid rangelands of Central Argentina: two decades of research. J Arid Environ 36:197–210. doi:10.1006/jare.1996.0205

    Article  Google Scholar 

  • Bustos JC (1995) El efecto del clima en los ovinos. II. Uso de cortinas de arbustos para atenuar la mortandad perinatal de corderos. Presencia 35:5–8

    Google Scholar 

  • Cabrera AL (1971) Fitogeografía de la República Argentina. Bol Soc Arg Bot 14(1–2):1–42

    Google Scholar 

  • Canfield R (1941) Application of the line interception method in sampling range vegetation. J For 39:388–394

    Google Scholar 

  • Carter MR (1993) Soil sampling and methods of analysis. Canadian Society of Soil Science, Lewis Publishers, Boca Raton

    Google Scholar 

  • Cecchi GA (2000) Relación entre la textura y salinidad de la superficie del suelo y la cobertura herbácea en islas de vegetación del monte rionegrino. In: Proceedings of the XVIIº Congreso Argentino de Ciencias.del Suelo. Mar del Plata, Argentina

  • Chambers JC, McMahon JA (1994) A day in the life of a seed: movements and fates of seeds and their implications for natural and managed systems. Annu Rev Ecol Syst 25:263–292. doi:10.1146/annurev.es.25.110194.001403

    Article  Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310. doi:10.1126/science.199.4335.1302

    Article  PubMed  CAS  Google Scholar 

  • Defossé GE, Bertiller MB, Robberecht R (1997) Effects of topography, soil moisture, wind, and grazing on Festuca seedlings in a Patagonian grassland. J Veg Sci 8:677–684. doi:10.2307/3237372

    Article  Google Scholar 

  • Erickson HE, Soto P, Jonson DW, Roath B, Hunsaker C (2005) Effects of vegetation patches on soil nutrient pools and fluxes within a mixed-conifer forest. For Sci 51:211–220

    Google Scholar 

  • Ferrer JA, Irisarri JA (1989) Suelos. Plano Nº 25. In Estudio Regional de Suelos. Relevamiento y Prioritación de Áreas con Posibilidades de Riego. Expte. Nº 181. Consejo Federal de Inversión. Dirección de Cooperación Técnica. Área de Infraestructura Hídrica. Secretaría de Estado del Copade Pcia. Neuquén

  • Frangi JL (1978) Ecología de la Vegetación. Manual de Trabajos Prácticos. Universidad Nacional de La Plata

  • Fryrear DW, Stubbendieck J, McCully WG (1973) Grass seedling response to wind and windblown sand. Crop Sci 13:622–625

    Article  Google Scholar 

  • Fulbright TE (1991) Why does brush increase? In: Welch TG (ed) Proceedings of brush management symposium; May 1991, Texas A&M University, College Station, Giddings, pp 6–15

  • Fulbright TE (1996) Viewpoint: a theoretical basis for planning woody plant control to maintain species diversity. J Range Manag 49:554–559. doi:10.2307/4002299

    Article  Google Scholar 

  • Gile LH, Gibbens RP, Lenz JM (1998) Soil-induced variability in root systems of creosotebush (Larrea tridentata) and tarbush (Flourensia cernua). J Arid Environ 39:57–78. doi:10.1006/jare.1998.0377

    Article  Google Scholar 

  • Gosz JR, Milne B (2005) Creosotebush biomass and productivity at five points. In: Dimensions of certain perennial plants on the Sevilleta National Wildlife Refuge. Sevilleta LTER Research. http://sevilleta.unm.edu/research/local/plant/dimensions/documents/creosote_biomass_and_productivity_at_five_points_ver2.doc

  • Grime JP (1981) Plant strategies and vegetation processes. John Wiley and Sons, New York

    Google Scholar 

  • Haase P, Pugnaire FI, Clark SC, Incoll LD (1996) Spatial patterns in a two-tiered semi-arid shrubland in Southeastern Spain. J Veg Sci 7:527–534. doi:10.2307/3236301

    Article  Google Scholar 

  • HilleRisLambers R, Rietkerk M, Van Den Bosch F, Herbert HT, Hans de Kroon P (2001) Vegetation pattern formation in semi-arid grazing systems. Ecology 82:50–61

    Google Scholar 

  • INTA EEA Pergamino (1998) V Curso de Física de Suelos. Técnicas de Laboratorio. Sección Suelos

  • INTA-GTZ (1996) Sistema Regional de Soporte de Decisiones. Pcia. Neuquén. Un diagnóstico del estado problemas y estrategias de desarrollo del sector agropecuario de la Patagonia Norte. INTA EEA Bariloche. Proyecto Prodeser. Convenio INTA-GTZ

  • Italconsult Argentina (1966) Proyecto de Riego y Colonización de La Picaza. Tomo I: Relación General y Tomo III: Apéndices. Pcia. Neuquén

  • Jackson JBC, Buss LW, Cook RE (1985) Population biology and evolution of clonal organisms. Yale University Press, New Haven

    Google Scholar 

  • Ladyman J (2003) Gutierrezia sarothrae (Pursh) Britton and Rusby. http://fs.fed.us/global/iitfpdf/shrubs/Gutierrezia%20sarothrae.pdf

  • Lascano R, Landivar J (1997) Soil gravimetric water content: measurement and calculations. Texas Agricultural Experiment Station. Lubbock and Corpus Christi. http://plantstress.com/Articles/drought_i/drought_i_files/SOIL%20GRAVIMETRIC.htm

  • Lee CA, Lauenroth WK (1994) Spatial distribution of grass and shrubs root systems in the shortgrass steppe. Am Midl Nat 137:117–123. doi:10.2307/2426206

    Article  Google Scholar 

  • Longland WS, Bateman SL (2002) Viewpoint: the ecological value of shrub islands on disturbed sagebrush rangelands. J Range Manag 55:571–575. doi:10.2307/4004000

    Article  Google Scholar 

  • Ludwig JA, Tongway DJ (1995) Spatial organization of landscapes and its function in semi-arid woodlands, Australia. Landsc Ecol 10:51–63. doi:10.1007/BF00158553

    Article  Google Scholar 

  • Ludwig JA, Eager RW, Williams RJ, Lowe LM (1999) Declines in vegetation patches, plant diversity, and grasshopper diversity near cattle watering-points in the Victoria River District, Northern Australia. Range J 21:135–149. doi:10.1071/RJ9990135

    Article  Google Scholar 

  • Ludwig JA, Wilcox BP, Breshears DD, Tongway DJ, Imeson AC (2004) Vegetation patches and runoff-erosion as interacting ecohydrological processes in semiarid landscapes. Ecology 86:288–297. doi:10.1890/03-0569

    Article  Google Scholar 

  • Lyford F, Qashu H (1969) Infiltration rates as affected by desert vegetation. Water Resour Res 5:1373–1376. doi:10.1029/WR005i006p01373

    Article  Google Scholar 

  • Mack RN, Pyke DA (1984) The demography of Bromus tectorum: the role of microclimate, grazing and disease. J Ecol 72:731–748. doi:10.2307/2259528

    Article  Google Scholar 

  • Marshall KA (1995) Larrea tridentata. In: Fisher WC (ed) The fire effects information system (Online). US Department of Agriculture, Forest Service; Intermountain Research Station, Intermountain Fire Sciences Laboratory, Missoula. http://fs.fed.us/database/feis

  • Montaña C (1992) Decolonization of bare areas in two-phase mosaics of an arid ecosystem. J Ecol 80:315–327. doi:10.2307/2261014

    Article  Google Scholar 

  • Morello J (1956) Estudios botánicos en las regiones áridas de la Argentina. III: Reacciones de las plantas a los movimientos del suelo en Neuquén extra-andino. Rev Agron Nor Arg 2:79–152

    Google Scholar 

  • Morello J (1958) La provincia fitogeográfica del Monte. Opera Lilloana II. Instituto “Miguel Lillo”, Universidad Nacional de Tucumán

  • Movia CP, Ower GH, Pérez CE (1982) Estudio de la Vegetación Natural. Ministerio de Hacienda, Subsecretaría de Recursos Naturales Pcia. Neuquén

  • Nelson D (1999) Restoration of vegetation and soil patterning in semi-arid mulga lands of Eastern Australia. http://horticulture.coafes.umn.edu/vd/h5015/99papers/nelson.htm

  • Northrup BK, Stuth JW, Archer S, McKown D, Crane A (1995) Structure of shrub clusters in a subtropical savanna in South Texas. In: NE West Salt Lake City Utah (ed) Rangelands in a sustainable biosphere. Proceedings of the Fifth International Range Congress

  • Norton BE, Bermant DJ (1977) Plant replacement and population interactions of perennials in salt desert shrub vegetation. Annual Meeting of the Ecological Society of America, Lansing

    Google Scholar 

  • Olsen SR, Sommers LE (1982) Phosphorus. In: Miller RH, Keeney DR (eds) Methods of soil analysis. Agronomy # 9, ASA SSSA, Madison, pp 403–430

    Google Scholar 

  • Osman A, Pieper RD (1988) Growth of Gutierrezia sarothrae seedlings in the field. J Range Manag 41:92–93. doi:10.2307/3898801

    Article  Google Scholar 

  • Pielou EC (1977) Mathematical ecology. Wiley, New York

    Google Scholar 

  • Pyke DA, Archer S (1991) Plant-plant interactions affecting plant establishment and persistence on revegetated rangeland. J Range Manag 44:550–557. doi:10.2307/4003035

    Article  Google Scholar 

  • Raven PH, Evert RF, Eichhorn SE (1986) Biology of plants. Worth Publishers Inc, New York

    Google Scholar 

  • Rostagno CM, del Valle HF (1988) Mounds associated with shrubs in aridic soils of northeastern Patagonia: characteristics and probable genesis. Catena 15:347–359. doi:10.1016/0341-8162(88)90056-2

    Article  Google Scholar 

  • Russell PF, Rao TR (1940) On habitat and association of species of anopheline larvae in south-eastern Madras. J Malar Inst India 3:153–178

    Google Scholar 

  • Sala OE, Lahuenroth WK (1982) Small rainfall events: an ecological role in semiarid regions. Oecologia 53:301–304. doi:10.1007/BF00389004

    Article  Google Scholar 

  • Sánchez G, Puigdefabregas J (1994) Interactions of plant growth and sediment movement on slopes in a semiarid environment. Geomorphology 9:243–260. doi:10.1016/0169-555X(94)90066-3

    Article  Google Scholar 

  • Schenk HJ (1999) Clonal splitting in desert shrubs. Plant Ecol 141:41–52. doi:10.1023/A:1009895603783

    Article  Google Scholar 

  • Schenk HJ (2004) Sizes and shapes of root systems in pulse-driven ecosystems. http://ag.arizona.edu/research/Schwinn/abstracts.rtf

  • Schenk HJ, Holzapfel C, Hamilton JG, Mahall BE (2003) Spatial ecology of a small desert shrub on adjacent geological substrates. J Ecol 91:383–395. doi:10.1046/j.1365-2745.2003.00782.x

    Article  Google Scholar 

  • Schulte LA, Niemi GJ (1998) Bird communities of early-successional burned and logged forest. J Wildl Manag 64:1418–1429. doi:10.2307/3802008

    Article  Google Scholar 

  • Servicio Meteorológico Nacional (1958) Estadísticas climatológicas 1941-1950. Publicación B1. No 3. Ministerio de Aeronáutica, Argentina

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Google Scholar 

  • Silvertown J, Wilson JB (1994) Community structure in a desert perennial community. Ecology 75:409–417. doi:10.2307/1939544

    Article  Google Scholar 

  • Soil Survey Staff (1975) Soil taxonomy. USDA agriculture handbook no. 436. US Government Printing Office, Washington DC

    Google Scholar 

  • Soriano A (1956) Los distritos florísticos de la Provincia Patagónica. Rev Inv Agric 10:323–348

    Google Scholar 

  • Soriano A, Sala OE, Perelman SB (1994) Patch structure and dynamics in a Patagonian arid steppe. Vegetatio 111:127–135. doi:10.1007/BF00040332

    Article  Google Scholar 

  • SSSA (1996) Methods of soil analysis. Part 3. Chemical methods—SSSA book series no. 5. Soil Sci Soc Amer and Am Soc Agron, Madison

    Google Scholar 

  • Sutter GC, Brigham RM (1998) Avifaunal and habitat changes resulting from conversion of native prairies to crested wheatgrass: patterns at songbird community and species level. Can J Zool 76:869–875. doi:10.1139/cjz-76-5-869

    Article  Google Scholar 

  • Thorsteinsson I, Olafsson G, van Dyne GM (1971) Range resources of Iceland. J Range Manag 24:86–93. doi:10.2307/3896512

    Article  Google Scholar 

  • Tirmenstein D (1999) USDA forest service rocky mountain research station, fire sciences laboratory (October 2001). Fire Effects Information System. http://fs.fed.us/database

  • Tongway DJ, Ludwig JA (1989) Mulga log mounds: fertile patches in the semi-arid woodlands of eastern Australia. Aust J Ecol 14:263–268. doi:10.1111/j.1442-9993.1989.tb01436.x

    Article  Google Scholar 

  • Tongway DJ, Ludwig JA (1990) Vegetation patterning in semi-arid mulga lands of eastern Australia. Aust J Ecol 15:23–34. doi:10.1111/j.1442-9993.1990.tb01017.x

    Article  Google Scholar 

  • Tongway DJ, Ludwig JA (1996) Rehabilitation of semi-arid landscapes in Australia. I. Restoring productive soil patches. Restor Ecol 4:388–397. doi:10.1111/j.1526-100X.1996.tb00191.x

    Article  Google Scholar 

  • USDA (1954) Diagnóstico y Rehabilitación de Suelos Salinos y Sódicos. Manual de Agricultura No. 60

  • Walkley A, Black IA (1934) An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–37. doi:10.1097/00010694-193401000-00003

    Article  CAS  Google Scholar 

  • West NE (1989) Spatial pattern—functional interactions in shrub-dominated plant communities. In: The biology and utilization of shrubs. Academic Press Inc. pp 283–305

  • Wilcox BP, Breshears DD (1994) Hydrology and ecology of piñon-juniper woodlands: conceptual framework and field studies. In: Desired future conditions for piñon-juniper ecosystems. Rocky Mountain Forest and Range Experiment Station, Technical Report INT-258, Fort Collins, CO, pp 109–119. www.fs.fed.us/database/feis/plants..nical_and_ecological_characteristics.html

  • Wilson JB, Briske DD (1978) Drought and temperature effects on the establishment of blue grama seedlings. In: Proceedings of the First International Rangeland Congress. Denver, pp 359–361

  • Yeaton RI (1978) A cyclical relationship between Larrea tridentata and Opuntia leptocaulis in the northern Chihuahuan Desert. J Ecol 66:651–656. doi:10.2307/2259156

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Busso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Busso, C.A., Bonvissuto, G.L. Structure of vegetation patches in northwestern Patagonia, Argentina. Biodivers Conserv 18, 3017–3041 (2009). https://doi.org/10.1007/s10531-009-9622-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-009-9622-6

Keywords

Navigation