Skip to main content

Advertisement

Log in

Spatial configuration matters: a test of the habitat amount hypothesis for plants in calcareous grasslands

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

A recent hypothesis, the habitat amount hypothesis, predicts that the total amount of habitat in the landscape can replace habitat patch size and isolation in studies of species richness in fragmented landscapes.

Objectives

To test the habitat amount hypothesis by first evaluating at which spatial scale the relationship between species richness in equal-sized sample quadrats and habitat amount was the strongest, and then test the importance of spatial configuration of habitat—measured as local patch size and isolation—when habitat amount was taken into account.

Methods

A quasi-experimental setup with 20 habitat patches of dry calcareous grasslands varying in patch size, patch isolation and habitat amount at the landscape scale was established in the inner Oslo fjord, Southern Norway. We recorded species richness of habitat specialists of vascular plants in equal-sized sample quadrats and analysed the relationship between species richness, habitat amount in the landscape and patch size and isolation.

Results

Although the total amount of habitat in a 3 km-radius around the local patch was positively related to species richness in the sample quadrats, local patch size had an additional positive effect, and the effect of patch size was higher when the amount of habitat within the 3 km-radius was high than when it was low.

Conclusions

In our study system of specialist vascular plants in dry calcareous grasslands, we do not find support for the habitat amount hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alofs K, González A, Fowler N (2014) Local native plant diversity responds to habitat loss and fragmentation over different time spans and spatial scales. Plant Ecol 215:1139–1151

    Article  Google Scholar 

  • Andrén H (1994) Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71:355–366

    Article  Google Scholar 

  • Bakkestuen V, Stabbetorp O, Molia A, Evju M (2014) The hotspot dry calcareous grassland in the Oslofjord region. Description of the habitat and a monitoring method developed in the ARKO project. NINA Report 1102

  • Brown JH, Kodric-Brown A (1977) Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58:445–449

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Cain ML, Miligan BG, Strand AE (2000) Long-distance seed dispersal in plant populations. Am J Bot 87:1217–1227

    Article  CAS  PubMed  Google Scholar 

  • Connor EF, McCoy ED (1979) The statistics and biology of the species-area relationship. Am Nat 13:791–833

    Article  Google Scholar 

  • Coudrain V, Schüepp C, Herzog F, Albrecht M, Entling MH (2014) Habitat amount modulates the effect of patch isolation on host-parasitoid interactions. Front Environ Sci 2:1–8

    Article  Google Scholar 

  • Cousins SAO, Vanhoenacker D (2011) Detection of extinction debt depends on scale and specialisation. Biol Conserv 144:782–787

    Article  Google Scholar 

  • Didham RK, Kapos V, Ewers RM (2012) Rethinking the conceptual foundations of habitat fragmentation research. Oikos 121:161–170

    Article  Google Scholar 

  • Evju M, Blumentrath S, Skarpaas O, Stabbetorp OE, Sverdrup-Thygeson A (2015) Plant species occurrence in a fragmented landscape: the importance of species traits. Biodivers Conserv 24:547–561

    Article  Google Scholar 

  • Evju M, Stange E (eds) (2016) Når artenes leveområder splittes opp-eksempler fra øyene i indre Oslofjord. Sluttrapport fra strategisk instituttsatsing (SIS) 2011-2015. NINA Temahefte 65

  • Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–143

    Article  PubMed  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40:1649–1663

    Article  Google Scholar 

  • Fahrig L (2015) Just a hypothesis: a reply to Hanski. J Biogeogr 42:993–994

    Article  Google Scholar 

  • Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr 16:265–280

    Article  Google Scholar 

  • Franzén M, Schweiger O, Betzholtz P-E (2012) Species-area relationships are controlled by species traits. PloS one 7:e37359

    Article  PubMed  PubMed Central  Google Scholar 

  • Giladi I, May F, Ristow M, Jeltsch F, Ziv Y (2014) Scale-dependent species-area and species-isolation relationships: a review and a test study from a fragmented semi-arid agro-ecosystem. J Biogeogr 41:1055–1069

    Article  Google Scholar 

  • Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1(2):e1500052

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanski I (1994) Patch-occupancy dynamics in fragmented landscapes. Trends Ecol Evol 9:131–135

    Article  CAS  PubMed  Google Scholar 

  • Hanski I (2015) Habitat fragmentation and species richness. J Biogeogr 42:989–993

    Article  Google Scholar 

  • He FL, Hubbell SP (2011) Species-area relationships always overestimate extinction rates from habitat loss. Nature 473:368–371

    Article  CAS  PubMed  Google Scholar 

  • Holland JD, Bert DG, Fahrig L (2004) Determining the spatial scale of species’ response to habitat. Bioscience 54:227–233

    Article  Google Scholar 

  • Jackson HB, Fahrig L (2015) Are ecologists conducting research at the optimal scale? Glob Ecol Biogeogr 24:52–63

    Article  Google Scholar 

  • Köchy M, Rydin H (1997) Biogeography of vascular plants on habitat islands, peninsulas and mainlands in an east-central Swedish agricultural landscape. Nord J Bot 17:215–223

    Article  Google Scholar 

  • Lid J, Lid DT (2005) Norsk flora, 7th edn. Det Norske Samlaget, Oslo

    Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Matthews TJ, Cottee-Jones HE, Whittaker RJ (2014) Habitat fragmentation and the species-area relationship: a focus on total species richness obscures the impact of habitat loss on habitat specialists. Divers Distrib 20:1136–1146

    Article  Google Scholar 

  • Mazerolle MJ (2016) AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). R package version 2:0–4. http://CRAN.R-project.org/package=AICcmodavg

  • Munguia-Rosas MA, Montiel S (2014) Patch size and isolation predict plant species density in a naturally fragmented forest. PloS one 9(10):e111742

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakagawa S, Cuthill IC (2007) Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev 82:591–605

    Article  PubMed  Google Scholar 

  • Pärtel M, Zobel M, Zobel K, van der Maarel E (1996) The species pool and its relation to species richness: evidence from estonian plant communities. Oikos 75:111–117

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Development Core Team (2013) nlme: linear and nonlinear mixed effect models. R package version 3:1–109. http://www.r-project.org

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Reitalu T, Purschke O, Johansson LJ, Hall K, Sykes MT, Prentice HC (2012) Responses of grassland species richness to local and landscape factors depend on spatial scale and habitat specialization. J Veg Sci 23:41–51

    Article  Google Scholar 

  • Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rybicki J, Hanski I (2013) Species-area relationships and extinctions caused by habitat loss and fragmentation. Ecol Lett 16:27–38

    Article  PubMed  Google Scholar 

  • Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–32

    Article  Google Scholar 

  • Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol 1:103–113

    Article  Google Scholar 

  • Shadish WR, Cook TD, Campbell DT (2002) Experimental and quasi-experimental designs for generalized causal inference. Houghton Mifflin, Boston

    Google Scholar 

  • Silvertown J (2004) Plant coexistence and the niche. Trends Ecol Evol 19:605–611

    Article  Google Scholar 

  • Smith AC, Koper N, Francis CM, Fahrig L (2009) Confronting collinearity: comparing methods for disentangling the effects of habitat loss and fragmentation. Landscape Ecol 24:1271–1285

    Article  Google Scholar 

  • Sverdrup-Thygeson A, Gustafsson L, Kouki J (2014) Spatial and temporal scales relevant for conservation of dead-wood associated species: current status and perspectives. Biodivers Conserv 23:513–535

    Article  Google Scholar 

  • Villard M-A, Metzger JP (2014) Beyond the fragmentation debate: a conceptual model to predict when habitat configuration really matters. J Appl Ecol 51:309–318

    Article  Google Scholar 

  • Wiens JA (1989) Spatial scaling in ecology. Func Ecol 3:385–397

    Article  Google Scholar 

  • Williams CB (1943) Area and the number of species. Nature 152:262–265

    Article  Google Scholar 

  • Wilson MC, Chen XY, Corlett RT, Didham RK, Ding P, Holt RD, Laurance WF (2016) Habitat fragmentation and biodiversity conservation: key findings and future challenges. Landscape Ecol 31:219–227

    Article  Google Scholar 

  • With KA (2016) Are landscapes more than the sum of their patches? Landscape Ecol. doi:10.1007/s10980-015-0328-8

    Google Scholar 

  • Wollan AK, Bakkestuen V, Bjureke K, Bratli H, Endrestøl A, Stabbetorp OE, Sverdrup-Thygeson A, Halvorsen R (2011a) Open calcareous ground with shallow soil in the Oslo fjord region-a hotspot habitat. Final report from period II of the ARKO project. NINA Report 713

  • Wollan AK, Bakkestuen V, Halvorsen R (2011b) Spatial predictive modelling of dry calcareous grasslands in the Oslofjord area. In: Halvorsen R (ed) The scientific basis for habitat monitoring in Norway-baseline surveys. University of Oslo, Olso

    Google Scholar 

Download references

Acknowledgments

This study was carried out under the projects ‘‘Survey and monitoring of red-listed species’’ (ARKO, funded by the Norwegian Environment Agency), and ‘‘Management of biodiversity and ecosystem services in spatially structured landscapes’’ (funded by the Norwegian Research Council, grant 208434/F40). We are grateful to A. Often, O. Skarpaas, O.E. Stabbetorp and J. Wesenberg for fieldwork contributions, and to three referees for valuable comments to earlier versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianne Evju.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Supplementary material 2 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evju, M., Sverdrup-Thygeson, A. Spatial configuration matters: a test of the habitat amount hypothesis for plants in calcareous grasslands. Landscape Ecol 31, 1891–1902 (2016). https://doi.org/10.1007/s10980-016-0405-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-016-0405-7

Keywords

Navigation