Skip to main content

Advertisement

Log in

Spatial modelling of spider biodiversity: matters of scale

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

In order to choose adequate conservation strategies to face the deterioration of natural ecosystems and the decline of species, it is essential to know the spatial distribution of diversity. Here, we use predictive modelling in spiders, which is a group of highly diverse generalist predators that show a great potential as diversity indicators. We built a predictive model of spider species richness within a protected area assessing those environmental factors that have the strongest effect in the distribution of spider species richness. Our results show a strong relationship between spider species richness and landscape descriptors of land cover. We also assessed the importance of the spatial scale to identify patterns of spider diversity and we selected the optimal spatial scale for species richness and composition by a multiscale approach. We found that this relationship in spiders occurs at relatively fine scales, i.e., 220 × 220 m. The multiple linear regression model at the optimal scale explained 82% of the total variance in species richness. We used the Jackknife procedure to validate the model and we obtained a predictive map of spider richness by extrapolating the model to the entire range of the protected area. Our results show that predictive modelling is a useful tool to estimate the spatial patterns of diversity in a widespread group of arthropod generalist predators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Basset Y, Mavoungou JF, Mikissa JB, Missa O, Miller SE, Kitching RL et al (2004) Discriminatory power of different arthropod data sets for the biological monitoring of anthropogenic disturbance in tropical forest. Biodivers Conserv 13:709–732. doi:10.1023/B:BIOC.0000011722.44714.a4

    Article  Google Scholar 

  • Bergin TM, Best LB, Freemark KE, Koehler KJ (2000) Effects of landscape structure on nest predation in roadsides of a midwestern agroecosystem: a multiscale analysis. Landsc Ecol 15:131–143. doi:10.1023/A:1008112825655

    Article  Google Scholar 

  • Blanco Castro E et al (2005) Los bosques Ibéricos. Una interpretación geobotánica. Editorial Planeta, S.A. Barcelona, España

  • Bonte D, Criel P, Van Thournout I, Maelfait JP (2003) Regional and local variation of spider assemblages (Araneae) from coastal grey dunes along the North Sea. J Biogeogr 30:901–911. doi:10.1046/j.1365-2699.2003.00885.x

    Article  Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055. doi:10.2307/1940179

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Churchill TB (1997) Spiders as ecological indicators: an overview for Australia. Mem Mus Vic 56(2):331–337

    Google Scholar 

  • Chust G, Pretus JL, Ducrot D, Bedòs A, Deharveng L (2003) Response of soil fauna to landscape heterogeneity: determining optimal scales for biodiversity modelling. Conserv Biol 17:1712–1723. doi:10.1111/j.1523-1739.2003.00564.x

    Article  Google Scholar 

  • Chust G, Pretus JL, Ducrot D, Ventura D (2004a) Scale dependency of insect assemblages in response to landscape pattern. Landsc Ecol 19:41–57. doi:10.1023/B:LAND.0000018368.99833.f2

    Article  Google Scholar 

  • Chust G, Ducrot D, Pretus JL (2004b) Land cover mapping with patch-derived landscape indices. Landsc Urban Plan 69:437–449. doi:10.1016/j.landurbplan.2003.12.002

    Article  Google Scholar 

  • Clench H (1979) How to make regional fists of butterflies: some thoughts. J Lepid Soc 33(4):216–231

    Google Scholar 

  • Coddington JA, Young LH, Coyle FA (1996) Estimating spider species richness in a southern Appalachian cove hardwood forest. J Arachnol 24:111–128

    Google Scholar 

  • Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philos T R Soc B 345:101–118. doi:10.1098/rstb.1994.0091

    Article  CAS  Google Scholar 

  • Congalton RG (1991) A review of assessing the accurarcy of classifications of remotely sensed data. Remote Sens Environ 37:35–46. doi:10.1016/0034-4257(91)90048-B

    Article  Google Scholar 

  • Cushman SA, McGarigal K (2002) Hierarchical, multi-scale decomposition of species-environment relationships. Landsc Ecol 17:637–646. doi:10.1023/A:1021571603605

    Article  Google Scholar 

  • Dennis P, Young MR, Gordon IJ (1998) Distribution and abundance of small insects and arachnids in relation to structural heterogeneity of grazed, indigenous grasslands. Ecol Entomol 23:3–253. doi:10.1046/j.1365-2311.1998.00135.x

    Article  Google Scholar 

  • Dennis P, Young MR, Bentley C (2001) The effect of varied grazinz management on epigeal spiders, harvestment and pseudoscorpions of Nardus stricta grassland in upland Scotland. Agric Ecosyst Environ 86:39–57. doi:10.1016/S0167-8809(00)00263-2

    Article  Google Scholar 

  • Dobson A (1999) An introduction to generalized linear models. Chapman & Hall, London

    Google Scholar 

  • Duffey E (1966) Spider ecology and habitat structure (Arach., Araneae). Senck Biol 47:45–49

    Google Scholar 

  • Fagan WF, Hurd LE (1991) Direct and indirect effects of generalist predators on a terrestrial arthropod community. Am Midl Nat 126:380–384. doi:10.2307/2426113

    Article  Google Scholar 

  • Garcia LA, Armbruster M (1997) A decision support system for evaluation of wildlife habitat. Ecol Modell 102:287–300. doi:10.1016/S0304-3800(97)00064-1

    Article  Google Scholar 

  • Gaston KJ, Hudson E (1994) Regional patterns of diversity and estimates of global insect species richness. Biodivers Conserv 3:493–500. doi:10.1007/BF00115155

    Article  Google Scholar 

  • González-Megías A, Gómez JM, Sánchez-Piñero F (2007) Diversity-habitat heterogeneity relationship at different spatial and temporal scales. Ecography 30:31–41

    Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391. doi:10.1046/j.1461-0248.2001.00230.x

    Article  Google Scholar 

  • Guisan A, Theurillat JP, Kienast F (1998) Predicting the potential distribution of plant species in an Alpine environment. J Veg Sci 9:65–74. doi:10.2307/3237224

    Article  Google Scholar 

  • Guisan A, Edwards JR, Hastie T (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Modell 157:89–100. doi:10.1016/S0304-3800(02)00204-1

    Article  Google Scholar 

  • Harrison S, Davies KF, Safford HD, Viers JH (2006) Beta diversity and the scale-dependence of the productivity-diversity relationship: a test in the Californian serpentine flora. J Ecol 94:110–117. doi:10.1111/j.1365-2745.2005.01078.x

    Article  Google Scholar 

  • Hortal J, García-Pereira P, García-Barros E (2004) Butterfly species richness in mainland Portugal: predictive models of geographic distribution patterns. Ecography 27:68–82. doi:10.1111/j.0906-7590.2004.03635.x

    Article  Google Scholar 

  • Hunter MD, Price PW (1992) Playing chutes and ladders—heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology 73:724–732

    Google Scholar 

  • Hurd LE, Fagan WF (1992) Cursorial spiders and succesion: age or habitat structure? Oecologia 92:215–221. doi:10.1007/BF00317367

    Article  Google Scholar 

  • Innes JL, Koch B (1998) Forest biodiversity and its assessment by remote sensing. Glob Ecol Biogeogr Lett 7:397–419. doi:10.2307/2997712

    Article  Google Scholar 

  • Jiménez-Valverde A, Lobo JM (2007) Determinants of local spider (Araneidae and Thomisidae) species richness on a regional scale: climate and altitude vs. habitat structure. Ecol Entomol 32:113–122. doi:10.1111/j.1365-2311.2006.00848.x

    Article  Google Scholar 

  • Johnson CJ, Boyce MS, Mulders R, Gunn A, Gau RJ, Cluff HD et al (2004) Quantifying patch distribution at multiple spatial scales: applications to wildlife-habitat models. Landsc Ecol 19:869–882. doi:10.1007/s10980-004-0246-7

    Article  Google Scholar 

  • Langellotto GA, Denno RF (2004) Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia 139:1–10. doi:10.1007/s00442-004-1497-3

    Article  PubMed  Google Scholar 

  • Lawrence KL, Wise DH (2000) Spider predation on forest-floor Collembola and evidence for indirect effects on decomposition. Pedobiologia (Jena) 44:33–39. doi:10.1078/S0031-4056(04)70026-8

    Article  Google Scholar 

  • Lawrence KL, Wise DH (2004) Unexpected indirect effect of spiders on the rate of litter disappearance in a deciduous forest. Pedobiologia (Jena) 48:149–157. doi:10.1016/j.pedobi.2003.11.001

    Article  Google Scholar 

  • Legendre L (1993) Spatial autocorrelation—trouble or new paradigm. Ecology 74:1659–1673. doi:10.2307/1939924

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • Lensing JR, Wise DH (2006) Predicted climate change alters the indirect effect of predators on an ecosystem process. Proc Natl Acad Sci USA 103(42):15502–15505. doi:10.1073/pnas.0607064103

    Article  PubMed  CAS  Google Scholar 

  • Lep J, Smilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge

    Google Scholar 

  • Levin SA (1992) The problem of patterns and scale in ecology. Ecology 73:1943–1967. doi:10.2307/1941447

    Article  Google Scholar 

  • Lillesand TM, Kiefer RW (2000) Remote sensing and image interpretation. Wiley, New York

    Google Scholar 

  • Lobo JM, Araujo MB (2003) La aplicación de datos faunísticos para el diseño de redes de reserva: el caso de los anfibios y reptiles de la Península Ibérica. Graellsia 59(2–3):399–408

    Google Scholar 

  • Magurran AE (1988) Diversidad ecológica y su medición. Princeton University Press, Princeton

    Google Scholar 

  • Miller RI (1994) Mapping the diversity of nature. Chapman & Hall, London

    Google Scholar 

  • Nicholls AO (1989) How to make biological surveys go further with generalized linear models. Biol Conserv 50:51–75. doi:10.1016/0006-3207(89)90005-0

    Article  Google Scholar 

  • Ninyerola M, Pons X, Roure JM (2000) A methodological approach of climatological modelling of air temperature and precipitation through GIS techniques. Int J Climatol 20:1823–1841. doi:10.1002/1097-0088(20001130)20:14<1823::AID-JOC566>3.0.CO;2-B

    Article  Google Scholar 

  • Ortega-Huerta MA, Peterson AT (2004) Modelling spatial patterns of biodiversity for conservation prioritization in North-eastern Mexico. Divers Distrib 10:39–54. doi:10.1111/j.1472-4642.2004.00051.x

    Article  Google Scholar 

  • Pearce JL, Venier LA (2006) The use of ground beetles (Coleopters: Carabidae) and spiders (Araneae) as bioindicators of sustainable forest management: a review. Ecol Indic 6(4):780–793. doi:10.1016/j.ecolind.2005.03.005

    Article  Google Scholar 

  • Pearman PB (2002) The scale of community structure: habitat variation and avian guilds in tropical forest understory. Ecol Monogr 72:19–39

    Google Scholar 

  • Perner J, Wytrykush C, Kahmen A, Buchmann N, Egerer I, Creutzburg S et al (2005) Effects of plant diversity, plant productivity and habitat parameters on arthropod abundance in montane European grasslands. Ecography 28:429–442. doi:10.1111/j.0906-7590.2005.04119.x

    Article  Google Scholar 

  • Price SJ, Marks DR, Howe RW, Hanowski JM, Niemi GJ (2004) The importance of spatial scale for conservation and assessment of anuran populations in coastal wetlands of the western Great Lakes, USA. Landsc Ecol 20:441–454. doi:10.1007/s10980-004-3167-6

    Article  Google Scholar 

  • Quattrochi DA, Pelletier RE (1990) Remote sensing for analysis of landscape. In: Turner MG, Gardner RH (eds) Quantitative methods in landscape ecology. Springer-Verlag, New York, pp 51–77

    Google Scholar 

  • Radeloff VC, Mladenoff DJ, Boyce MS (1999) Detecting jack pine budworm defoliation using spectral mixture analysis: separating effects from determinants. Remote Sens Environ 69:156–169. doi:10.1016/S0034-4257(99)00008-5

    Article  Google Scholar 

  • Rahbek C (2005) The role of spatial scale and the perception of large-scale species-richness patterns. Ecol Lett 8:224–239. doi:10.1111/j.1461-0248.2004.00701.x

    Article  Google Scholar 

  • Ricketts TH (2001) Aligning conservation goals: are patterns of species richness and endemism concordant at regional scales? Anim Biodivers Conserv 24:91–99

    Google Scholar 

  • Roland J, Taylor P (1997) Insect parasitoid species respond to forest structure at different spatial scales. Nature 386:710–714. doi:10.1038/386710a0

    Article  CAS  Google Scholar 

  • Saab V (1999) Importance of spatial scale to habitat use by breeding birds in riparian forests: a hierarchical analysis. Ecol Appl 9:135–151. doi:10.1890/1051-0761(1999)009[0135:IOSSTH]2.0.CO;2

    Article  Google Scholar 

  • Siemann E (1998) Experimental tests of effects of plant productivity and diversity on grassland arthropod diversity. Ecology 79:2057–2070

    Article  Google Scholar 

  • Siepel H (1989) Objective selection of indicator species for nature management. Compte rendus du symposium ‘Invertebres de Belgique’, Brussels, pp 443–446

  • Soberon J, Llorente J (1993) The use of species accumulation curves for the prediction of species richness. Conserv Biol 7(3):480–488. doi:10.1046/j.1523-1739.1993.07030480.x

    Article  Google Scholar 

  • Sorensen LL (2004) Composition and diversity of the spider fauna in the canopy of a montane forest in Tanzania. Biodivers Conserv 13:437–452. doi:10.1023/B:BIOC.0000006510.49496.1e

    Article  Google Scholar 

  • Sorensen LL, Coddington JA, Scharff N (2002) Inventorying and estimating subcanopy spider diversity using semiquantitative sampling methods in an Afromontane forest. Environ Entomol 31:319–330

    Article  Google Scholar 

  • Speight MCD (1986) Criteria for the selection of insects to be used as bio-indicators in nature conservation research. Proceedings of the 3rd European Congress of Entomology, Amsterdam, pp 485–488

  • Stehman SV (1997) Selecting and interpreting measures of thematic classification accuracy. Remote Sens Environ 62:77–89. doi:10.1016/S0034-4257(97)00083-7

    Article  Google Scholar 

  • Store R, Jokimäki J (2003) A GIS-based multi-scale approach to habitat suitability modeling. Ecol Modell 169:1–15. doi:10.1016/S0304-3800(03)00203-5

    Article  Google Scholar 

  • TerBraak CJF (1987) The analysis of vegetation—environment relationship by canonical correspondence analysis. Vegetatio 69:69–77. doi:10.1007/BF00038688

    Article  Google Scholar 

  • TerBraak CJF, Smilauer P (1998) CANOCO reference manual and user’s guide to canoco for windows: software for canonical community ordination (version 4). Microcomputer Power, Ithaca

    Google Scholar 

  • Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, Schwager M et al (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92

    Google Scholar 

  • Turner MG, O’Neill RV, Gardner RH, Milne BT (1989) Effects of changing spatial scale on the analysis of landscape pattern. Landsc Ecol 3:153–162. doi:10.1007/BF00131534

    Article  Google Scholar 

  • Uetz GW (1991) Habitat structure and spider foraging. In: Bell SA, McCoy ED, Mushinsky HR (eds) Habitat structure. The physical arrangement of objects in space. Chapman & Hall, London

    Google Scholar 

  • Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3:385–397. doi:10.2307/2389612

    Article  Google Scholar 

  • Wilson KA, Westphal MI, Possingham HP, Elith J (2005) Sensitivity of conservation planning to different approaches to using predicted species distribution data. Biol Conserv 122:99–112. doi:10.1016/j.biocon.2004.07.004

    Article  Google Scholar 

  • Wise DH (1993) Spiders in ecological webs. Cambridge University Press, Cambridge

    Google Scholar 

  • Woodcock BA, Potts SG, Westbury DB, Ramsay AJ, Lambert M, Harris SJ et al (2007) The importance of sward architectural complexity in structuring predatory and phytophagous invertebrate assemblages. Ecol Entomol 32:302–311. doi:10.1111/j.1365-2311.2007.00869.x

    Article  Google Scholar 

  • Wu B, Smenins F (2000) Multiple-scale habitat modeling approach for rare plant conservation. Landsc Urban Plan 51:11–28. doi:10.1016/S0169-2046(00)00095-5

    Article  Google Scholar 

  • Zar JH (1996) Biostatistical analysis. Prentice-Hall, New Jersey

    Google Scholar 

Download references

Acknowledgments

We would like to thank Jordi Moya-Laraño for his valuable help during manuscript preparation and Salvador Carranza for advice. Eva De Mas was financially supported by the Natural Park of Cadí-Moixeró.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva De Mas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Mas, E., Chust, G., Pretus, J.L. et al. Spatial modelling of spider biodiversity: matters of scale. Biodivers Conserv 18, 1945–1962 (2009). https://doi.org/10.1007/s10531-008-9566-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-008-9566-2

Keywords

Navigation