Skip to main content

Advertisement

Log in

Arthropods in biodiversity hotspots: the case of the Phytoseiidae (Acari: Mesostigmata)

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

The biodiversity hotspot concept was defined by Myers in 1988 to determine priority areas for conservation. They have high endemism levels and have lost more than 70% of their original vegetated area. To date, there is little information on arthropod diversity in these zones. This work focuses on the biodiversity of the Phytoseiidae (Acari), one of the best known among the order Mesostigmata, in these threatened areas. These mites are usually predators and they are worldwide spread. Geographic distribution of phytoseiids in 27 biodiversity hostspots was assessed from data of the last world catalogue published in 2004. One thousand two hundred and thirty species are reported from at least one hotspot (62% of the total species number) and 604 species (30% of the total species number) are endemic to the 27 hotspots considered. The number of reports/publication in hotspot areas (2.6) is higher than in non-hotspot zones (1.5). Hotspots areas could be thus considered as a great reservoir of the Phytoseiidae diversity, just as they are for vertebrates and plants. Correlations between plant, vertebrate, mite diversity and endemism, as well as congruence rates between endemism levels of these three organisms suggest that the biodiversity patterns of plants and vertebrates mirror well those of the Phytoseiidae (both for endemicity and species richness). More intense conservation efforts in biodiversity hotspots would thus be assumed to affect plant and vertebrate biodiversity, as already known, but also arthropod biodiversity, as it was assumed. These results further support thus the importance of these zones in biodiversity conservation, even for organisms like mites, very small and poorly studied in this regards. More data on arthropods are, however, required to confirm these preliminary observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agrawal AA (1997) Do leaf domatia mediate a plant mutualism? An experimental test of the effects on predators and herbivores. Ecol Entomol 22:371–376. doi:10.1046/j.1365-2311.1997.00088.x

    Article  Google Scholar 

  • Agrawal AA, Karban R (1997) Domatia mediate plant–arthropod mutualism. Nature 387:562–563. doi:10.1038/42384

    Article  CAS  Google Scholar 

  • Arruda Filho GP, Moraes GJ (2003) Stigmaeidae Mites (Acari: Raphignathoidea) from Arecaceae of the Atlantic Forest in São Paulo State, Brazil. Neotrop Entomol 32(1):49–57. doi:10.1590/S1519-566X2003000100007

    Article  Google Scholar 

  • Brooks TM, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Rylands AB, Konstant WR, Flick P, Pilgrim J, Oldfield S, Magin G, Hilton-Taylor C (2002) Habitat loss and extinction in the hotspots of biodiversity. Conserv Biol 16:909–923. doi:10.1046/j.1523-1739.2002.00530.x

    Article  Google Scholar 

  • Cabrero-Sañudo FJ, Lobo JM (2003) Estimating the number of species not yet described and their characteristics: the case of Western Palaearctic dung beetle species (Coleoptera, Scarabaeoidea). Biodivers conserv 12:147–166

    Article  Google Scholar 

  • Castro TMMG, Moraes GJ (2007) Mite diversity on plants of different families found in the Brazilian Atlantic forest. Neotrop Entomol 36(5):774–782

    PubMed  Google Scholar 

  • Chant DA, McMurtry JA (2003a) A review of the subfamilies Amblyseiinae: part II. Neoseiulini new tribe. Int J Acarol 29:3–46

    Google Scholar 

  • Chant DA, McMurtry JA (2003b) A review of the subfamilies Amblyseiinae (Acari: Phytoseiidae): Part II. The tribe Kampimodromini. Int J Acarol 29:179–224

    Google Scholar 

  • Chant DA, McMurtry JA (2004a) A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae) Part III. The tribe Amblyseiini Wainstein, subtribe Amblyseiina N. subtribe. Int J Acarol 30:171–228

    Google Scholar 

  • Chant DA, McMurtry JA (2004b) A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae) Part IV. The tribe Amblyseiini Wainstein, subtrive Arrenoseiina Chant and McMurtry. Int J Acarol 30:291–312

    Google Scholar 

  • Chant DA, McMurtry JA (2005a) A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae) Part V. Tribe Amblyseiini, subtribe Proprioseiopsina Chant and McMurtry. Int J Acarol 31:3–22

    Google Scholar 

  • Chant DA, McMurtry JA (2005b) A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae) Part VI. The tribe Euseiini N. tribe, subtribes Typhlodromalina, N. subtribe, Euseiina N. subtribe and Ricoseiina N. subtribe. Int J Acarol 31:187–224

    Google Scholar 

  • Chant DA, McMurtry JA (2005c) A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae) Part VII. Typhlodromipsini n. tribe. Int J Acarol 31:315–340

    Google Scholar 

  • Chant DA, McMurtry JA (2006a) A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae) Part VIII. The tribes Macroseiini Chant, Denmark and Baker, Phytoseiulini n. tribe, Africoseiulini n. tribe and Indoseiulini Ehara and Amano. Int J Acarol 32:13–25

    Google Scholar 

  • Chant DA, McMurtry JA (2006b) A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae) Part IX. An overview. Int J Acarol 32:125–152

    Google Scholar 

  • Das A, Krishnaswamy J, Bawa KS, Kiran MC, Srinivas V, Kumar NS, Karanth KU (2006) Prioritisation of conservation areas in the Western Ghats, India. Biol Conserv 133(1):16–31. doi:10.1016/j.biocon.2006.05.023

    Article  Google Scholar 

  • Dusbabek F, Literak I, Capek M, Havlicek M (2007) Ascid mites (Acari: Mesitigmata: Ascidae) from Costa Rican hummingbirds (Aves: Trochilidae), with description of three new species and a key to the Proctolaelaps belemensis species group. Zootaxa 1484:51–67

    Google Scholar 

  • Eken G, Bennun L, Brooks TM, Darwall W, Fishpool LDC, Foster D, Knox D, Langhammer P, Matiku P, Radford E, Salaman P, Sechrest W, Smith ML, Spector S, Tordoff A (2004) Key biodiversity areas as site conservation targets. Bioscience 54:1110–1118. doi:10.1641/0006-3568(2004)054[1110:KBAASC]2.0.CO;2

    Article  Google Scholar 

  • Gaston KJ (2000) Global patterns in biodiversity. Nature 405:220–227. doi:10.1038/35012228

    Article  PubMed  CAS  Google Scholar 

  • Gebeyehu S, Samways JM (2006) Topographic heterogeneity plays a crucial role for grasshopper diversity in a southern African megabiodiversity hotspot. Biodivers Conserv 15:231–244. doi:10.1007/s10531-004-7065-7

    Article  Google Scholar 

  • Halliday RB (1986) Mites of the Macrocheles glaber group in Australia (Acarina: Macrochelidae). Aust J Zool 34:733–752. doi:10.1071/ZO9860733

    Article  Google Scholar 

  • Halliday RB (2000) The Australian species of Macrocheles (Acarina: Macrochelidae). Invertebr Taxon 14:273–326. doi:10.1071/IT99009

    Article  Google Scholar 

  • Jimenez-Valverde A, Jimenez Mendoza S, Martin Cano J, Munguira ML (2006) Comparing relative model fit of several species-accumulation functions to local Papilionidea and Hesperioidea butterfly inventories of Mediterranean habitats. Biodivers conserv 15:177–190

    Article  Google Scholar 

  • Kelly JA, Samways JM (2003) Diversity and conservation of forest-floor arthropods on a small Seychelles Island. Biodivers Conserv 12:1793–1813. doi:10.1023/A:1024161722449

    Article  Google Scholar 

  • Klimov PB, O’Connor BM (2007) Ancestral area analysis of Chaetodactylid mites (Acari: Chaetodactylidae) with description of a new early derivative genus and six new species from the Neotropics. Ann Entomol Soc Am 100(6):810–829. doi:10.1603/0013-8746(2007)100[810:AAAOCM]2.0.CO;2

    Article  Google Scholar 

  • Klompen H, Lekveishvili M, IV BlackW (2007) Phylogeny of parasitiform mites (Acari) based on rRNA. Mol Phyl Evol 43:936–951. doi:10.1016/j.ympev.2006.10.024

    Article  CAS  Google Scholar 

  • Kontschán J (2007) Two new Rotundabaloghia Hirschmann, 1975 species from Madagascar (Acari Mesostigmata: Uropodina). Annls hist nat Mus natn Hung 99:171–176

    Google Scholar 

  • Kostiainen TS, Hoy MA (1996) The Phytoseiidae as biological control agents of pest mites and insects. A bibliography. Monograph 17, University of Florida, Agricultural Experiment Station, pp 355

  • Kreiter S, Tixier M-S (2006) A new genus and a new species of Phytoseiid mites (Acari: Mesostigmata) from Southern Tunisia with analysis and discussion on its phylogenetic position. Zootaxa 1237:1–18

    Google Scholar 

  • Kreiter S, Tixier M-S, Croft BA, Auger P, Barret D (2002) Plants and leaf characteristics influencing the predaceous mite, Kampimodromus aberrans (Oudemans) in habitats surrounding vineyards (Acari: Phytoseiidae). Environ Entomol 31:648–660

    Article  Google Scholar 

  • Lofego AC, Moraes GJ (2006) Ácaros (Acari) Associados a Mirtáceas (Myrtaceae) em Áreas de Cerrado no Estado de São Paulo com Análise Faunística das Famílias Phytoseiidae e Tarsonemidae. Neotrop Entomol 35(6):731–746. doi:10.1590/S1519-566X2006000600003

    Article  PubMed  Google Scholar 

  • Lund MP, Rahbek C (2002) Cross-taxon congruence in complementarity and conservation of temperate biodiversity. Anim Conserv 5:163–171. doi:10.1017/S1367943002002226

    Article  Google Scholar 

  • Margules CR, Usher MB (1981) Criteria used in assessing wildlife conservation potential: a review. Biol Conserv 21:79–109. doi:10.1016/0006-3207(81)90073-2

    Article  Google Scholar 

  • McMurtry JA, Croft BA (1997) Life-styles of phytoseiid mites and their roles in biological control. Annu Rev Entomol 42:291–321. doi:10.1146/annurev.ento.42.1.291

    Article  PubMed  CAS  Google Scholar 

  • Meier R, Dikow T (2004) Significance of specimen databases from taxonomic revisions for estimating and mapping the global species diversity of invertebrates and repatriating reliable specimen data. Conserv Biol 8(2):478–488. doi:10.1111/j.1523-1739.2004.00233.x

    Article  Google Scholar 

  • Mittermeier RA, Myers N, Thomsen JB (1998) Biodiversity hotspots and major tropical wilderness areas: approaches to setting conservation priorities. Conserv Biol 12:516–520. doi:10.1046/j.1523-1739.1998.012003516.x

    Article  Google Scholar 

  • Mittermeier RA, Mittermeier CG, Brooks TM, Pilgrim JD, Konstant WR, da Fonseca GAB, Kormos C (2003) Wilderness and biodiversity conservation. Proc Natl Acad Sci USA 100:10309–10313. doi:10.1073/pnas.1732458100

    Article  PubMed  CAS  Google Scholar 

  • Mittermeier RA, Robles Gil P, Hoffman M, Pilgrim J, Brooks T, Goettsch Mittermeier C, Lamoreux J, da Fonseca GAB (2005) Hotspots revisited: earth’s biologically richest and most threatened terrestrial ecoregions. http://www.biodiversityhotspots.org/xp/Hotspots/

  • de Moraes GJ, McMurtry JA, Denmark HA (1986) A catalog of the mite family Phytoseiidae. References to taxonomy, synonymy, distribution and habitat. EMBRAPA—DDT, Brasilia, p 353

    Google Scholar 

  • Moraes GJ, McMurtry JA, Mineiro JLC (2003) A new genus and species of phytoseiid mite from Brazil. Int J Acarol 29:47–54

    Article  Google Scholar 

  • de Moraes GJ, McMurtry JA, Denmark HA, Campos CB (2004) A revised catalog of the mite family Phytoseiidae. Zootaxa 434:1–494

    Google Scholar 

  • Moritz C, Richardson KS, Ferrier S, Monteith GB, Stanisic J, Williams SE, Whiffin T (2001) Biogeographical concordance and efficiency of taxon indicators for establishing conservation priority in a tropical rainforest biota. Proc R Soc Lond B Biol Sci 268(1479):1875–1881. doi:10.1098/rspb.2001.1713

    Article  CAS  Google Scholar 

  • Myers N (1988) Threatened biotas: hostspots in tropical forests. Environmentalist 8:187–208. doi:10.1007/BF02240252

    Article  PubMed  CAS  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. doi:10.1038/35002501

    Article  PubMed  CAS  Google Scholar 

  • Nelder MP, Adler PH, Kachvoryan EA (2005) Do gut symbiotes reflect the endemism of their host black flies (Diptera: Simuliidae) in the Caucasus of Armenia? J Biogeogr 32(8):1333–1341

    Google Scholar 

  • O’Dowd DJ, Pemberton RW (1998) Leaf domatia and foliar mite abundance in broad-leaf deciduous forest of North Asia. Am J Bot 85:70–78. doi:10.2307/2446556

    Article  Google Scholar 

  • O’Dowd DJ, Willson MF (1989) Leaf domatia and mites on Australasian plants: ecological and evolutionary implications. Biol J Lin Soc 37:191–236

    Google Scholar 

  • O’Dowd DJ, Willson MF (1997) Leaf domatia and the distribution and abundance of foliar mites in broad-leaf deciduous forest in Wisconsin. Am Midl Nat 137:337–348. doi:10.2307/2426853

    Article  Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’Amico JA, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Lamoreux JF, Ricketts TH, Itoua I, Wettengel WW, Kura Y, Hedao P, Kassem K (2001) Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51(11):933–938. doi:10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2

    Article  Google Scholar 

  • Pawar SS, Birand AC, Ahmed MF, Sengupta S, Shankar Raman TR (2007) Conservation biogeography in North-East India: hierarchical analysis of cross-taxon distributional congruence. Divers Distrib 13(1):53–65

    Google Scholar 

  • Prendergast JR, Quinn RM, Lawton JH, Eversham BC, Gibbon DW (1993) Rare species the coincidence of diversity hostpots and conservation strategies. Nature 365:335–337. doi:10.1038/365335a0

    Article  Google Scholar 

  • Ragusa S (2003) Description of a new genus and of two new species of phytoseiid mites (Parasiformes, Phytoseiidae) collected in Chile. Acarologia 43:337–344

    Google Scholar 

  • Reid WV (1998) Biodiversity hotspots. Trends Ecol Evol 13(7):275–280. doi:10.1016/S0169-5347(98)01363-9

    Article  Google Scholar 

  • Reyers B, van Jaarsveld AS, Krüger M (2000) Complementarity as a biodiversity indicator strategy. Proc R Soc Lond Ser B Biol Sci 267(1442):1471–2954

    Article  Google Scholar 

  • Rodriguez LO, Young KR (2000) Biological diversity of Peru: determining priority areas for conservation. Ambio 29:329–337. doi:10.1639/0044-7447(2000)029[0329:BDOPDP]2.0.CO;2

    Article  Google Scholar 

  • Shahabaddin SchulzeCH, Tscharntke T (2005) Changes of dung beetle communities from rainforests towards agroforestry systems and annual cultures in Sulawesi (Indonesia). Biodivers Conserv 14:863–877

    Article  Google Scholar 

  • Sihvonen P, Siljander M (2005) Species diversity and geographical distribution of Scopulini moths (Lepidoptera: Geometridae, Sterrhinae) on a world-wide scale. Biodiver Conserv 14:703–721. doi:10.1007/s10531-004-3921-8

    Article  Google Scholar 

  • Silva ES, Moraes GJ, Krantz GW (2004) Diversity of edaphic Rhodacaroid Mites (Acari: Mesostigmata: Rhodacaroidea) in natural ecosystems in the state of São Paulo, Brazil. Neotrop Entomol 33(4):547–555

    Google Scholar 

  • Spector S (2002) Biogeographic crossroads as priority areas for biodiversity conservation. Conserv Biol 16(6):1480–1487. doi:10.1046/j.1523-1739.2002.00573.x

    Article  Google Scholar 

  • StatSoft France (2005) STATISTICA (logiciel d’analyse de données), version 7.1. www.statsoft.fr

  • Thompson GG, Withers PC (2003) Effect of richness and relative abundance on the shape of the species accumulation curve. Aust Ecol 28:355–360. doi:10.1046/j.1442-9993.2003.01294.x

    Article  Google Scholar 

  • Tixier M-S, Kreiter S, Moraes GJ (2008) Biogeographic distribution of the mites of the family Phytoseiidae (Acari: Mesostigmata). Biol J Lin Soc 93:845–856. doi:10.1111/j.1095-8312.2007.00937.x

    Article  Google Scholar 

  • Walter D, Proctor H (1999) Mites, Ecology, evolution and behaviour. CABI publishing, Wallingford, UK, p 322

    Google Scholar 

  • Walter DE, Halliday RB, Lindquist EE (1993) A review of the genus Asca (Acarina: Ascidae) in Australia, with descriptions of three new leaf-inhabiting species. Invertebr Taxon 7:1327–1347. doi:10.1071/IT9931327

    Article  Google Scholar 

  • Williams P, Faith D, Manne L, Sechrest W, Preston C (2005) Complementarity analysis: mapping the performance of surrogates for biodiversity. Biol Conserv 128(2):253–264. doi:10.1016/j.biocon.2005.09.047

    Article  Google Scholar 

  • Willis KJ, Araujo MB, Bennett KD, Figueroa-Rangel B, Froyd CA, Myers N (2007) How can a knowledge of the past help to conserve the future? Biodiversity conservation and the relevance of long-term ecological studies. Philos Trans R Soc Biol Sci 362:175–186. doi:10.1098/rstb.2006.1977

    Article  Google Scholar 

Download references

Acknowledgments

We are very grateful to Serge Morand (UMR ISEM, CNRS, Montpellier, France) and Gilberto de Moraes (ESALQ, Piracicaba, Brazil) for useful comments of this manuscript during its conception and to Michael Costello (California Polytechnic State University, San Luis Obispo, USA) for his comments and English improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-S. Tixier.

Appendix

Appendix

See Table 3.

Table 3 Countries and states from where phytoseiid mites were reported (Moraes et al. 2004) and corresponding hotspots

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tixier, MS., Kreiter, S. Arthropods in biodiversity hotspots: the case of the Phytoseiidae (Acari: Mesostigmata). Biodivers Conserv 18, 507–527 (2009). https://doi.org/10.1007/s10531-008-9517-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-008-9517-y

Keywords

Navigation