Skip to main content
Log in

Predicting range expansion of the map butterfly in Northern Europe using bioclimatic models

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

The two main goals of this study are: (i) to examine the range shifts of a currently northwards expanding species, the map butterfly (Araschnia levana), in relation to annual variation in weather, and (ii) to test the capability of a bioclimatic envelope model, based on broad-scale European distribution data, to predict recent distributional changes (2000–2004) of the species in Finland. A significant relationship between annual maximum dispersal distance of the species and late summer temperature was detected. This suggests that the map butterfly has dispersed more actively in warmer rather than cooler summers, the most notable dispersal events being promoted by periods of exceptionally warm weather and southerly winds. The accuracy of the broad-scale bioclimatic model built for the species with European data using Generalized Additive Models (GAM) was good based on split-sample evaluation for a single period. However, the model’s performance was poor when applied to predict range shifts in Finland. Among the many potential explanations for the poor success of the transferred bioclimatic model, is the fact that bioclimatic envelope models do not generally account for species dispersal. This and other uncertainties support the view that bioclimatic models should be applied with caution when they are used to project future range shifts of species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AUC:

Area under curve of a receiver operating characteristic (ROC) plot

GAM:

Generalized additive models

References

  • Akaike H (1974) A new look at statistical model identification. IEEE Trans Autom Control AU-19:716–722

    Article  Google Scholar 

  • Araújo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33:1677–1688

    Article  Google Scholar 

  • Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47

    Article  PubMed  Google Scholar 

  • Araújo MB, Rahbek C (2006) How does climate change affect biodiversity? Science 313:1396–1397

    Article  PubMed  Google Scholar 

  • Araújo MB, Pearson RG, Thuiller W, Erhard M (2005a) Validation of species-climate impact models under climate change. Global Change Biol 11:1504–1513

    Article  Google Scholar 

  • Araújo MB, Thuiller W, Williams PH, Reginster I (2005b) Downscaling European species atlas distributions to a finer resolution: implications for conservation planning. Global Ecol Biogeogr 14:17–30

    Article  Google Scholar 

  • Araújo MB, Whittaker RJ, Ladle RJ, Erhard M (2005c) Reducing uncertainty in projections of extinction risk from climate change. Global Ecol Biogeogr 14:529–538

    Article  Google Scholar 

  • Bakkenes M, Alkemade J, Ihle F, Leemans R, Latour J (2002) Assessing the effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Global Change Biol 8:390–407

    Article  Google Scholar 

  • Barry S, Elith J (2006) Error and uncertainty in habitat models. J Appl Ecol 43:413–423

    Article  Google Scholar 

  • Beaumont LJ, Hughes L (2002) Potential changes in the distributions of latitudinally restricted Australian butterfly species in response to climate change. Global Change Biol 8:954–971

    Article  Google Scholar 

  • Beerling DJ, Huntley B, Bailey JP (1995) Climate and the distribution of Fallopia japonica: use of an introduced species to test the predictive capacity of response surfaces. J Veget Sci 6:269–282

    Article  Google Scholar 

  • Berry P, Dawson T, Harrison P, Pearson R (2002) Modelling potential impacts of climate change on the bioclimatic envelope of species in Britain and Ireland. Global Ecol Biogeogr 11:453–462

    Article  Google Scholar 

  • Brakefield PM, Shreeve TG (1992) Diversity within populations. In: Dennis RLH (ed) The ecology of butterflies in Britain. Oxford University Press, Oxford, pp 178–216

    Google Scholar 

  • Bryant SR, Thomas CD, Bale JS (2002) The influence of thermal ecology on the distribution of three nymphalid butterflies. J Appl Ecol 39:43–55

    Article  Google Scholar 

  • Collingham YC, Hill MO, Huntley B (1996) The migration of sessile organism: a simulation model with measurable parameters. J Veget Sci 7:831–846

    Article  Google Scholar 

  • Dovgailo KE, Solodovnikov IA, Rubin NI (2003) The butterflies (Diurna, Lepidoptera) of Republic of Belarus. CD key and database on the basis of software “Lysandra”, Minsk

  • Fielding A, Bell J (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Fric Z, Konvicka M (2000) Adult population structure and behaviour of two seasonal generations of the European Map Butterfly, Araschnia levana, species with seasonal polyphenism (Nymphalidae). Nota Lepidopterol 23:2–25

    Google Scholar 

  • Fric Z, Konvicka M (2002) Generations of the polyphenic butterfly Araschnia levana differ in body design. Evol Ecol Res 4:1017–1032

    Google Scholar 

  • Gitay H, Brown S, Easterling W, Jallow B (2001) Ecosystems and their goods and services. In: McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (eds) IPCC Third Assessment Report. Climate Change 2001: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, pp 248–249

    Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model135:147–186

    Google Scholar 

  • Hampe A (2004) Bioclimate envelope models: what they detect and what they hide. Global Ecol Biogeogr 13:469–476

    Article  Google Scholar 

  • Hastie TJ, Tibshirani RJ (1986) Generalized additive models. Stat Sci 1:297–318

    Article  Google Scholar 

  • Heikkinen RK, Birks HJB (1996) Spatial and environmental components of variation in the distribution patterns of subarctic plant species at Kevo, N Finland - a case study at the meso-scale level. Ecography 19:341–351

    Article  Google Scholar 

  • Heikkinen RK, Luoto M, Araújo MB, Virkkala R, Thuiller W, Sykes MT (2006) Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog Phys Geogr 30:751–777

    Article  Google Scholar 

  • Hill JK, Thomas CD, Huntley B (1999) Climate and habitat availability determine 20th century changes in a butterfly’s range margin. Proc R Soc Lond Ser B, Biol Sci 266:1197–1206

    Article  Google Scholar 

  • Hill JK, Thomas CD, Fox R, Telfer MG, Willis SG, Asher J, Huntley B (2002) Responses of butterflies to twentieth century climate warming: implications for future ranges. Proc R Soc Lon B 269:2163–2171

    Article  CAS  Google Scholar 

  • Hill JK, Thomas CD, Huntley B (2003) Modeling present and potential future ranges of European butterflies using climate response surfaces. In: Boggs C, Watt W, Ehrlich P (eds) Butterflies. Ecology and evolution of taking flight. The University of Chicago Press, Chicago, pp 149–167

    Google Scholar 

  • Holdridge LR (1967) Life zone ecology. Tropical Science Center, Jan Hose, Costa Rica

    Google Scholar 

  • Ivanov AI (1999) Artenverzeichnis der Macrolepidoptera von Sankt-Petersburg und des Sankt-Petersburg Gebietes nach Aufsammlungen in den Jahren 1960–1998 (Insecta, Lepidoptera). Atalanta 30:293–356

    Google Scholar 

  • Iverson LR, Schwartz MW, Prasad AM (2004) How fast and far might tree species migrate in the eastern United States due to climate change? Global Ecol Biogeogr 13:209–219

    Article  Google Scholar 

  • Kadmon R, Farber O, Danin A (2003) A systematic analysis of factors affecting the performance of climatic envelope models. Ecol Appl 13:853–867

    Article  Google Scholar 

  • Kesküla T (1992) Distributions maps of Estonian butterflies (Lepidoptera: Hesperionoidea, Papilionoidea). Acta Musei Zoologici, vol. 6. Universitatis Tartuensis, Tartu, p 60

    Google Scholar 

  • Komonen A, Grapputo A, Kaitala V, Kotiaho J, Päivinen J (2004) The role of niche breadth, resource availability and range position on the life history of butterflies. Oikos 105:41–54

    Article  Google Scholar 

  • Kudrna O (2002) The distribution atlas of European butterflies. Oedippus 20:1–342

    Google Scholar 

  • Landis JR, Koch GC (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  PubMed  CAS  Google Scholar 

  • Lawler JJ, White D, Neilson RP, Blaustein AR (2006) Predicting climate-induced range shifts: model differences and model reliability. Global Change Biol 12:1–17

    Article  Google Scholar 

  • Lehmann A, Overton JM, Leathwick JR (2003) GRASP: generalized regression analysis and spatial prediction. Ecol Model 160:165–183

    Article  Google Scholar 

  • Luoto M, Fronzek S, Zuidhoff FS (2004) Spatial modelling of palsa mires in relation to climate in northern Europe. Earth Surf Process Landforms 29:1373–1387

    Article  Google Scholar 

  • Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393

    Article  Google Scholar 

  • Luoto M, Heikkinen RK, Pöyry J, Saarinen K (2006) Determinants of the biogeographical distributions of butterflies in boreal regions. J Biogeogr 33:1764–1778

    Article  Google Scholar 

  • Luoto M, Pöyry J, Heikkinen RK, Saarinen K (2005) Uncertainty of bioclimate envelope models based on geographical distribution of species. Global Ecol Biogeogr 14:575–584

    Article  Google Scholar 

  • Luoto M, Virkkala R, Heikkinen RK (2007) The role of land cover in bioclimatic models depends on spatial resolution. Global Ecol Biogeogr 16:34–42

    Article  Google Scholar 

  • Marttila O, Haahtela T, Aarnio H, Ojalainen P (1990) Suomen päiväperhoset. Kirjayhtymä Oy, Helsinki

    Google Scholar 

  • McPherson JM, Jetz W, Rogers DJ (2006) Using coarse-grained occurrence data to predict species distributions at finer spatial resolutions – possibilities and limitations. Ecol Model 192:499–522

    Article  Google Scholar 

  • Midgley GF, Hannah L, Millar D, Rutherford MC, Powrie LW (2002) Assessing the vulnerability of species richness to anthropogenic climate change in a biodiversity hotspot. Global Ecol Biogeogr 11:445–451

    Article  Google Scholar 

  • Midgley GF, Hannah L, Millar D, Thuiller W, Booth A (2003) Developing regional and species-level assessments of climate change impacts on biodiversity in the Cape Floristic Region. Biol Conserv 112:87–97

    Article  Google Scholar 

  • Midgley GF, Hughes GO, Thuiller W, Rebelo AG (2006) Migration rate limitations on climate change-induced range shifts in Cape Proteaceae. Divers Distrib 12:555–562

    Article  Google Scholar 

  • Mikkola K (1986) Direction of insect migration in relation to wind. In: Danthanarayana W (ed) Insect flight: dispersal and migration. Springer-Verlag, Berlin, Heidelberg, pp 152–171

    Google Scholar 

  • Mikkola K (2000) Sää ja hyönteisten vaellukset 1999. Baptria 25:33–43

    Google Scholar 

  • Mitchell TD, Carter TR, Jones PD, Hulme M, New M (2003) A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100). Tyndall Centre Work Pap, vol 55

  • New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Climate Res 21:1–25

    Article  Google Scholar 

  • Parmesan C (2005) Biotic response: range and abundance changes. In: Lovejoy TE, Hannah L (eds) Climate change and biodiversity. Yale University Press, New Haven & London, pp 41–55

    Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  PubMed  CAS  Google Scholar 

  • Parmesan C, Ryrholm N, Stefanescu C, Hill JK, Thomas CD, Descamon H, Huntley B, Kaila L, Kullberg J, Tammaru T, Tennent WJ, Thomas JA, Warren M (1999) Poleward shifts in ranges of butterfly species associated with regional warming. Nature 399:579–583

    Article  CAS  Google Scholar 

  • Pearson R, Dawson T (2003) Predicting the impacts of climate change on the distribution of species: are bioclimatic envelope models useful? Global Ecol Biogeogr 12:361–371

    Article  Google Scholar 

  • Pearson RG, Dawson TP (2005) Long-distance plant dispersal and habitat fragmentation: identifying conservation targets for spatial landscape planning under climate change. Biol Conserv 123:389–401

    Article  Google Scholar 

  • Pearson RG, Dawson TP, Berry PM, Harrison PA (2002) SPECIES: a spatial evaluation of climate impact on the envelope of species. Ecol Model 154:289–300

    Article  Google Scholar 

  • Pearson RG, Dawson TP, Liu C (2004) Modelling species distributions in Britain: a hierarchical integration of climate and land-cover data. Ecography 27:285–298

    Article  Google Scholar 

  • Pearson RG, Thuiller W, Araújo MB, Martinez-Meyer E, Brotons L, McClean C, Miles L, Segurado P, Dawson TE, Lees DC (2006) Model-based uncertainty in species’ range prediction. J Biogeogr 33:1704–1711

    Article  Google Scholar 

  • Peterson AT (2001) Predicting species’ geographic distributions based on ecological niche modelling. The Condor 103:599–605

    Article  Google Scholar 

  • Peterson AT (2003) Projected climate change effects on Rocky Mountain and Great Plain birds: generalities on biodiversity consequences. Global Change Biol 9:647–655

    Article  Google Scholar 

  • Peterson AT, Martínez-Meyer E, González-Salazar C, Hall PW (2004) Modeled climate change effects on distributions of Canadian butterfly species. Can J Zool 82:851–858

    Article  Google Scholar 

  • Pollard E (1988) Temperature, rainfall, and butterfly numbers. J Appl Ecol 25:819–828

    Article  Google Scholar 

  • Pollard E, Yates TJ (1993) Monitoring butterflies for ecology and conservation. Chapman & Hall, London

    Google Scholar 

  • Popov SG (2005) SW Ukranian butterfly database: report 1973–2005, Lepidoptera: Papilionoidea & Hesperionoidea, Uzhgorod. http://www.alexanor.uzhgorod.ua. Cited 4 Aug 2005

  • Randin CF, Dirnböck T, Dullinger S, Zimmermann NE, Zappa M, Guisan A (2006) Are niche-based species distribution models transferable in space? J Biogeogr 33:1689–1703

    Article  Google Scholar 

  • Reinhardt R (1972) Der Landkärtchenfalter. Die Neue Brehm-Bucherei, Lutherstadt-Wittenberg

    Google Scholar 

  • Repo S (1993) Records of Finnish macrolepidoptera 1992. Baptria 18:59–65

    Google Scholar 

  • Saarinen K (2003) Valtakunnallisen päiväperhosseurannan vuoden 2002 tulokset. Baptria 28:4–15

    Google Scholar 

  • Saarinen K, Marttila O (2000) Valtakunnallisen päiväperhosseurannan vuoden 1999 tulokset. Baptria 25:4–10

    Google Scholar 

  • Saarinen K, Lahti T, Marttila O (2003) Population trends of Finnish butterflies (Lepidoptera: Hesperioidea, Papilionoidea) in 1991–2000. Biodivers Conserv 12:2147–2159

    Article  Google Scholar 

  • Schwartz MW, Iverson LR, Prasad AM (2001) Predicting the potential future distribution of four tree species in Ohio using current habitat availability and climatic forcing. Ecosystems 4:568–581

    Article  Google Scholar 

  • Settele J, Hammen V, Hulme P, Karlson U, Klotz S, Kotarac M, Kunin W, Marion G, O’Connor M, Petanidou T, Peterson K, Potts S, Pritchard H, Pysek P, Rounsevell M, Spangenberg J, Steffan-Dewenter I, Sykes M, Vighi M, Zobel M, Kühn I (2005) ALARM – Assessing LArge-scale environmental Risks for biodiversity with tested Methods. GAIA 14:69–72

    Google Scholar 

  • Skov F, Svenning J-C (2004) Potential impact of climate change on the distribution of forest herbs in Europe. Ecography 27:366–380

    Article  Google Scholar 

  • Spangenberg J (2007) Integrated scenarios for assessing biodiversity risks. Sustain Dev 15(6):343–356

    Article  Google Scholar 

  • Stefanescu C, Herrando S, Paramo F (2004) Butterfly species richness in the north-west Mediterranean Basin: the role of natural and human-induced factors. J Biogeogr 31:905–915

    Article  Google Scholar 

  • Swets KA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  PubMed  CAS  Google Scholar 

  • Thomas CD (2005) Recent evolutionary effects of climate change. In: Lovejoy TE, Hannah L (eds) Climate change and biodiversity. Yale University Press, New Haven and London, pp 75–88

    Google Scholar 

  • Thomas CD, Bodsworth EJ, Wilson RJ, Simmons AD, Davies ZG, Musche M, Conradt L (2001) Ecological and evolutionary processes at expanding range margins. Nature 441:577–581

    Article  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, Ferreira de Siquieira M, Grainger A, Hannah L, Hughes L, Huntley B, Van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148

    Article  PubMed  CAS  Google Scholar 

  • Thuiller W (2003) BIOMOD – optimizing predictions of species distributions and projecting potential future shifts under global change. Global Change Biol 9:1353–1362

    Article  Google Scholar 

  • Thuiller W (2004) Patterns and uncertainties of species’ range shifts under climate change. Global Change Biol 10:2020–2027

    Article  Google Scholar 

  • Thuiller W, Brotons L, Araújo MB, Lavorel S (2004) Effects of restricting environmental range of data to project current and future distributions. Ecography 27:165–172

    Article  Google Scholar 

  • Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci 102:8245–8250

    Article  PubMed  CAS  Google Scholar 

  • Tuhkanen S (1984) A circumboreal system of climatic-phytogeographical regions. Acta Bot Fenn 127:1–50

    Google Scholar 

  • Venäläinen A, Heikinheimo M (2002) Meteorological data for agricultural applications. Phys Chem Earth 27:1045–1050

    Google Scholar 

  • Virkkala R, Luoto M, Heikkinen RK, Leikola N (2005) Distribution patterns of boreal marshland birds: modelling the relationships to land cover and climate. J Biogeogr 32:1957–1970

    Article  Google Scholar 

  • Virtanen T, Neuvonen S (1999) Climate change and macrolepidopteran diversity in Finland. Chemosphere: Global Change Sci 1:439–448

    Article  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Gulgberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  PubMed  CAS  Google Scholar 

  • Wood S, Augustin N (2002) GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. Ecol Model 157:157–177

    Article  Google Scholar 

Download references

Acknowledgements

We thank Timothy R. Carter, Ilkka Hanski and Josef Settele for valuable comments on the manuscript. This research was funded by the EC FP6 Integrated Project ALARM (GOCE-CT-2003-506675) (Settele et al. 2005) and by the Academy of Finland (project grant 116544). Otakar Kudrna kindly gave permission to make use of the European butterfly species distribution maps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Risto K. Heikkinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitikka, V., Heikkinen, R.K., Luoto, M. et al. Predicting range expansion of the map butterfly in Northern Europe using bioclimatic models. Biodivers Conserv 17, 623–641 (2008). https://doi.org/10.1007/s10531-007-9287-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-007-9287-y

Keywords

Navigation