Skip to main content

Advertisement

Log in

Raised peat bog development and possible responses to environmental changes during the mid- to late-Holocene. Can the palaeoecological record be used to predict the nature and response of raised peat bogs to future climate change?

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Palaeoecological analyses of raised peat bog deposits in northwest Europe show the naturalness, antiquity and robust response of these ecosystems to environmental changes from c. 7800 years ago to the present. A review of the techniques used to identify these long-term features is presented and the role of climate change, autogenic change processes and human disturbance is discussed. Millennial records of vegetation changes recorded in peat deposits demonstrate the response (often rapid) of raised peat bog vegetation to climatic changes during the mid-Holocene, Bronze Age/Iron Age transition and the Little Ice Age. Greenhouse warming scenarios exceed the reconstructed Holocene record of climatic changes (c. the last 11, 500 years), and bog-water tables may fall considerably. A combination of centennial palaeoecological analyses of bogs affected by human disturbance and experimental manipulations have been used as analogues for the potential response of raised peat bog vegetation to these changes. These show that possible greenhouse gas climate forcing scenarios may exceed the ability of Sphagnum- dominated raised peat bogs to respond to projected increases in summer temperature and decreases in summer precipitation. In combination with increasing N deposition, a loss of their Sphagnum-rich vegetation and increases in the abundance of vascular plants could occur on decadal timescales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aaby B (1976) Cyclic climatic variations in climate over the past 5,500 years reflected in raised bogs. Nature 263:281–284

    Article  Google Scholar 

  • Barber KE (1981) Peat Stratigraphy and Climatic Change: a Palaeoecological Test of the Theory of Cyclic Peat Bog Regeneration. Balkema, Rotterdam

    Google Scholar 

  • Barber KE, Chambers FM, Maddy D, Stoneman R, Brew JS (1994) A sensitive high resolution record of late Holocene climatic change from a raised bog in northern England. Holocene 4:198–205

    Article  Google Scholar 

  • Barber KE, Chambers FM, Maddy D (2003) Holocene palaeoclimates from peat stratigraphy: macrofossil proxy climate records from three oceanic raised bogs in England and Ireland. Quatern Sci Rev 22:521–539

    Article  Google Scholar 

  • Barber KE, Chambers FM, Maddy D (2004) Late Holocene climatic history of northern Germany and Denmark: peat macrofossil investigations at Dosenmoor, Schleswig-Holstein, and Svanemose, Jutland. Boreas 33:132–144

    Article  Google Scholar 

  • Barber KE, Dumayne-Peaty L, Hughes PDM, Mauquoy D, Scaife RG (1998) Replicability and variability of the recent macrofossil and proxy-climate record from raised bogs: field stratigraphy and macrofossil data from Bolton Fell Moss and Walton Moss, Cumbria, England. J Quatern Sci 13:515–528

    Article  Google Scholar 

  • Barber KE, Maddy D, Rose N, Stevenson AC, Stoneman R, Thompson R (2000) Replicated proxy-climate signals over the last 2000 years from two distant UK peat bogs: new evidence for regional palaeoclimate teleconnections. Quatern Sci Rev 19:481–487

    Article  Google Scholar 

  • Barkman JJ (1992) Plant communities and synecology of bogs and heath pools in the Netherlands. In: Verhoeven JTA (ed) Fens and Bogs in the Netherlands: Vegetation, History, Nutrient Dynamics and Conservation. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 173–235

    Google Scholar 

  • Belyea LR, Clymo RS (2001) Feedback control of the rate of peat formation. Proc Royal Soc Lon B 268:1315–1321

    Article  CAS  Google Scholar 

  • Berendse F, van Breemen N, Rydin H, Buttler A, Heijmans M, Hoosbeek MR, Lee JA, Mitchell E, Saarinen T, Vasander H, Wallén B (2001) Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Global Change Biol 7:591–598

    Article  Google Scholar 

  • Birks HJB (1996) Contributions of Quaternernary palaeoecology to nature conservation. J Sci 7:89–98

    Google Scholar 

  • Blaauw M, van Geel B, Heuvelink GBM, Mauquoy D, van der Plicht J (2003) A numerical approach to 14C wiggle-match dating of organic deposits: best fits and confidence intervals. Quatern Sci Rev 22:1485–1500

    Article  Google Scholar 

  • Blaauw M, van Geel B, Mauquoy D, van der Plicht J (2004a) Carbon-14 wiggle-match dating of peat deposits: advantages and limitations. J Quatern Sci 19:177–181

    Article  Google Scholar 

  • Blaauw M, van Geel B, van der Plicht J (2004b) Solar forcing of climate change during the mid-Holocene: indications from raised bogs in the Netherlands. Holocene 14:35–44

    Article  Google Scholar 

  • Boggie R, Hunter RF, Knight AH (1958) Studies of the root development of plants in the field using radioactive tracers. J Ecol 46:621–639

    Article  Google Scholar 

  • Bradley RS, Briffa KR, Cole JE, Hughes MK, Osborn TJ (2003) The climate of the last millennium. In: Alverson K, Bradley RS, Pedersen TF (eds) Paleoclimate, Global Change and the Future. Springer Verlag, Berlin, pp 105–141

    Google Scholar 

  • Bragg OM (2002) Hydrology of peat-forming wetlands in Scotland. Sci Total Environ 294:111–129

    Article  PubMed  CAS  Google Scholar 

  • Chapman SB, Rose RJ (1991) Changes in the vegetation at Coom Rigg Moss National Nature Reserve within the period 1958–86. J Appl Ecol 28:140–153

    Article  Google Scholar 

  • Charman DJ (2002) Peatlands and Environmental Change. John Wiley & Sons, Chichester

    Google Scholar 

  • Charman DJ, Brown AD, Hendon D, Karofeld E (2004) Testing the relationship between Holocene peatland palaeoclimate reconstructions and instrumental data at two European sites. Quatern Sci Rev 23:137–143

    Article  Google Scholar 

  • Charman DJ, Hendon D, Packman S (1999) Multiproxy surface wetness records from replicate cores on an ombrotrophic mire: implications for Holocene palaeoclimate records. Holocene 14:451–463

    Google Scholar 

  • Charman DJ, Warner BG (1992) Relationship between testate amoebae (Protozoa: Rhizopoda) and micro-environmental parameters on a forested peatland in northeastern Ontario. Can J Zool 70:2474–2482

    Article  Google Scholar 

  • Clymo RS (1965) Experiments on breakdown of Sphagnum in two bogs. J Ecol 53:747–757

    Article  Google Scholar 

  • Clymo RS (1992) Productivity and decomposition of peatland ecosystems. In: Bragg OM, Hulme PD, Ingram HAP, Robertson RA (eds) Peatland Ecosystems and Man: An Impact Assessment. British Ecological Society/International Peat Society, Dundee, UK, pp 3–16

    Google Scholar 

  • Clymo RS, Duckett JG (1986) Regeneration of Sphagnum. New Phytol 102:589–614

    Article  Google Scholar 

  • Clymo RS, Oldfield F, Appleby PG, Pearson GW, Ratnesar P, Richardson N (1990) The record of atmospheric deposition on a rainwater-dependent peatland. Philos Trans Royal Soc Lon B 327:331–338

    Article  Google Scholar 

  • Coulson JC, Butterfield J (1978) An investigation of the biotic factors determining the rates of plant decomposition on blanket bog. J Ecol 66:631–650

    Article  Google Scholar 

  • Dahl-Jensen D, Mosegaard K, Gundestrup N, Clow GD, Johnsen SJ, Hansen AW, Balling N (1998) Past temperatures directly from the Greenland Ice Sheet. Science 282:268–271

    Article  PubMed  CAS  Google Scholar 

  • Duckett JG, Clymo RS (1988) Regeneration of bog liverworts. New Phytol 110:119–127

    Article  Google Scholar 

  • Eggelsmann R (1990) Moor und Wasser. In: Göttlich K (ed) Moor und Torfkunde. Schweizerbartsche Verlagsbuchhandlung, Stuttgart, pp 153–163

    Google Scholar 

  • Eggelsmann R, Heathwaite AL, Grosse-Brauckmann G, Küster E, Naucke W, Schuch M, Schweickle V (1993) Physical processes and properties of mires. In: Heathwaite AL, Göttlich K (eds) Mires: Process, Exploitation and Conservation. Wiley, Chichester, UK, pp 171–262

    Google Scholar 

  • Frankl R, Schmeidl H (2000) Vegetation change in a south German raised bog: ecosystem engineering by plant species, vegetation switch or ecosystem level feedback mechanisms? Flora 195:267–276

    Google Scholar 

  • Gore AJP, Urquhart C (1966) The effects of waterlogging on the growth of Molinia caerulea and Eriophorum vaginatum. J Ecol 54:617–633

    Article  Google Scholar 

  • Grosse-Brauckmann G (1986) Analysis of vegetative plant macrofossils. In: Berglund BE (ed) Handbook of Holocene Palaeoecology. John Wiley & Sons, Chichester, UK, pp 591–618

    Google Scholar 

  • Gunnarsson U, Granberg G, Nilsson M (2004) Growth, production and interspecific competition in Sphagnum: effects of temperature, nitrogen and sulphur treatments on a boreal mire. New Phytologist 163:349–359

    Article  Google Scholar 

  • Gunnarsson U, Malmer N, Rydin H (2002) Dynamics or constancy in Sphagnum dominated mire ecosystems? A 40-year study. Ecography 25:685–704

    Article  Google Scholar 

  • Haigh JD (2001) Climate variability and the influence of the sun. Science 294:2109–2111

    Article  PubMed  CAS  Google Scholar 

  • Hall VA, Mauquoy D (2005) Tephra-dated climate and human impact studies over the last 1500 years from a raised bog in central Ireland. Holocene 15:1086–1093

    Article  Google Scholar 

  • Heathwaite AL, Eggelsmann R, Göttlich KH, Kaule G (1993) Ecohydrology, mire drainage and mire conservation. In: Heathwaite AL, Göttlich KH (eds) Mires: Process, Exploitation and Conservation. John Wiley & Sons, Chichester, UK, pp 417–484

    Google Scholar 

  • Hendon D, Charman DJ (2004) High-resolution peatland water-table changes for the past 200 years: the influence of climate and implications for management. Holocene 14:125–134

    Article  Google Scholar 

  • Hughes PDM, Barber KE (2004) Contrasting pathways to ombrotrophy in three raised peat bogs from Ireland and Cumbria, England. Holocene 14:65–77

    Article  Google Scholar 

  • Hughes PDM, Mauquoy D, Barber KE, Langdon P (2000) Mire-development pathways and palaeoclimatic records from a full Holocene peat archive at Walton Moss, Cumbria, England. Holocene 10:465–479

    Article  Google Scholar 

  • Ingram HAP (1982) Size and shape in raised mire ecosystems: a geophysical model. Nature 297:300–302

    Article  Google Scholar 

  • IPCC (2001) Climate Change 2001; the Scientific Basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Johnson LC, Damman AWH (1991) Species controlled Sphagnum decay on a south Swedish raised bog. Oikos 61:234–242

    Article  Google Scholar 

  • Joosten JHJ (1992) Bog regeneration in the Netherlands: a review. In: Bragg OM, Hume PD, Ingram HAP, Robertson RA (eds) Peatland Ecosystems and Man: An Impact Assessment. British Ecological Society/International Peat Society, Dundee, UK, pp 367–373

    Google Scholar 

  • Joosten JHJ (1999) Peat the final frontier: Mires and peatlands outside the tropics. In: Maltby E, Maclean L (eds) Peatlands under Pressure. Arctic to Tropical Peatlands. Royal Holloway Institute for Environmental Research, Royal Holloway, UK, pp 9–17

    Google Scholar 

  • Katz NJ, Katz SV, Skobeyeva EI (1977) Atlas of plant remains in peat soil (in Russian). Nedra, Moscow

    Google Scholar 

  • Kuhry P (1994) The role of fire in the development of Sphagnum dominated peatlands in western boreal Canada. J Ecol 82:899–910

    Article  Google Scholar 

  • Lageard JGA, Thomas PA, Chambers FM (2000) Using fire scars and growth release in subfossil Scots pine to reconstruct prehistoric fires. Palaeogeogr Palaeoclimatol Palaeoecol 164:87–99

    Article  Google Scholar 

  • Lamb HH (1977) Climate: Past, Present and Future. Volume 2: Climatic History and the Future. Methuen, London

    Google Scholar 

  • Laprise R, Caya D, Frigon A, Paquin D (2003) Current and perturbed climate as simulated by the second-generation Canadian Regional Climate Model (CRCM-II) over northwestern North America. Climate Dyn 21:405–421

    Article  Google Scholar 

  • Lean J (2000) Evolution of the Sun’s Spectral Irradiance since the Maunder Minimum. Geophys Res Lett 27:2425–2428

    Article  CAS  Google Scholar 

  • Lindsay RA, Immirzi CP (1996) An Inventory of Lowland Raised Bogs in Great Britain. Scottish Natural Heritage Research, Survey and Monitoring Support No 78. Scottish Natural Heritage, Battleby, UK

  • Magny M (2004) Holocene climate variability as reflected by mid-European lake-level fluctuations and its probable impact on prehistoric human settlements. Quatern Int 113:65–79

    Article  Google Scholar 

  • Marshall NJ, Kushnir Y, Battisti D, Chang P, Czaja A, Dickson R, Hurrell R, McCartney M, Saravanan R, Visbeck M (2001) North Atlantic climate variability: phenomena, impacts and mechanisms. Int J Climatol 21:1863–1898

    Article  Google Scholar 

  • Mauquoy D, Barber KE (1999a) Evidence for climatic deteriorations associated with the decline of Sphagnum imbricatum Hornsch. Ex Russ. in six ombrotrophic mires from Northern England and the Scottish Borders. Holocene 9:423–437

    Article  Google Scholar 

  • Mauquoy D, Barber KE (1999b) A replicated 3000 year proxy-climate record from Coom Rigg Moss and Felecia Moss, The Border Mires, northern England. J Quatern Sci 14:263–275

    Article  Google Scholar 

  • Mauquoy D, van Geel B, Blaauw M, van der Plicht J (2002a) Evidence from North-West European bogs shows ‘Little Ice Age’ climatic changes driven by changes in solar activity. Holocene 12:1–6

    Article  Google Scholar 

  • Mauquoy D, Engelkes T, Groot MHM, Markesteijn F, Oudejans MG, van der Plicht J, van Geel B (2002b) High-resolution records of late Holocene climate change and carbon accumulation in two north-west European ombrotrophic peat bogs. Palaeogeogr Palaeoclimatol Palaeoecol 186:275–310

    Article  Google Scholar 

  • Mauquoy D, van Geel B, Blaauw M, Speranza A, van der Plicht J (2004a) Changes in solar activity and Holocene climate shifts derived from 14C wiggle-match dated peat deposits. Holocene 14:45–52

    Article  Google Scholar 

  • Mauquoy D, Blaauw M, van Geel B, Borromei A, Quattrocchio M, Chambers FM, Possnert G (2004b) Late Holocene climatic changes in Tierra del Fuego based on multi-proxy analyses of peat deposits. Quatern Res 61:148–158

    Article  Google Scholar 

  • Mayewski PA, Rohling EE, Stager JC, Karlén W, Maasch KA, Meeker LD, Meyerson EA, Gasse F, van Kreveld S, Holmgren K, Lee-Thorp J, Rosqvist G, Rack F, Staubwasser M, Schneider RR, Steig EJ (2004) Holocene climate variability. Quatern Res 62:243–255

    Article  Google Scholar 

  • McMullen JA, Barber KE, Johnson B (2004) A palaeoecological perspective of vegetation succession on raised bog microforms. Ecol Monogr 74:45–77

    Article  Google Scholar 

  • Middeldorp AA (1982) Pollen concentration as a basis for indirect dating and quantifying net organic and fungal production in a peat bog ecosystem. Rev Palaeobot Palynol 37:225–282

    Article  Google Scholar 

  • Ohlson M, Økland RH, Nordbakken JF, Dahlberg B (2001) Fatal interactions between Scots pine and Sphagnum mosses in bog ecosystems. Oikos 94:425–432

    Article  Google Scholar 

  • Økland RH (1989) A phytoecological study of the mire Northern Kisselbergmosen, SE Norway. I. Introduction, flora, vegetation and ecological conditions. Sommerfeltia 8:1–172

    Google Scholar 

  • Osvald H (1923) Die Vegetation des Hochmoores Komosse. Svenska Växtsociologiska Sällskapets Handlingar 1

  • Pellerin S, Lavoie C (2003) Reconstructing the recent dynamics of mires using a multitechnique approach. J Ecol 91:1008–1021

    Article  Google Scholar 

  • Pilcher JR, Baillie MGL, Brown DM, McCormac FG, Macsweeney PB, McLawrence AS (1995) Dendrochronology of sub-fossil pine in the North of Ireland. J Ecol 83:665–671

    Article  Google Scholar 

  • Ratcliffe DA (1986) Selection of important areas for wildlife conservation in Great Britain: the Nature Conservancy Council’s approach. In: Usher MB (ed) Wildlife Conservation Evaluation. Chapman and Hall, London, UK, pp 135–159

    Google Scholar 

  • Rodwell JS (1991) British Plant Communities. Volume 2. Mires and Heaths. Cambridge University Press, Cambridge

    Google Scholar 

  • Rydin H, McDonald AJS (1985) Photosynthesis in Sphagnum at different water contents. J Bryol 13:579–584

    Google Scholar 

  • Rydin H, Barber KE (2001) Long-term and fine-scale coexistence of closely related species. Folia Geobot 36:53–61

    Article  Google Scholar 

  • Schipperges B, Rydin H (1998) Response of photosynthesis of Sphagnum species from contrasting microhabitats to tissue water content and repeated desiccation. New Phytol 140:677–684

    Article  Google Scholar 

  • Speranza A, van der Plicht J, van Geel B (2000) Improving the time control of the Subboreal/Subatlantic transition in a Czech peat sequence by 14C wiggle-matching. Quatern Sci Rev 19:1589–1604

    Article  Google Scholar 

  • Svensmark H, Friis-Christensen E (1997) Variation of cosmic ray flux and global cloud coverage—a missing link in solar-climate relationships. J Atmos Solar-Terres Phys 59:1225–1232

    Article  CAS  Google Scholar 

  • Svensson G (1988) Fossil plant communities and regeneration patterns on a raised bog in South Sweden. J Ecol 76:41–59

    Article  Google Scholar 

  • van Breemen N (1995) How Sphagnum bogs down other plants. Trend Ecol Evol 10:270–275

    Article  Google Scholar 

  • van der Molen PC, Wijmstra TA (1994) The thermal regime of hummock-hollow complexes on Clara Bog, Co. Offaly. Biol Environ Proc Royal Irish Acad 94B:209–221

    Google Scholar 

  • van Geel B (1978) A palaeoecological study of Holocene peat bog sections in Germany and the Netherlands, based on the analyses of pollen, spores and macro- and microscopic remains of fungi, algae, cormophytes and animals. Rev Palaeobot Palynol 25:1–120

    Article  Google Scholar 

  • van Geel B, Buurman J, Waterbolk HT (1996) Archaeological and palaeoecological indications of an abrupt climate change in the Netherlands and evidence for climatological teleconnections around 2650 BP. J Quatern Sci 11:451–460

    Article  Google Scholar 

  • van Geel B, Middeldorp AA (1988) Vegetational history of Carbury Bog (Co. Kildare, Ireland) during the last 850 years and a test of the temperature indicator value of 2H/1H measurements of peat samples in relation to historical sources and meteorological data. New Phytol 109:377–392

    Article  Google Scholar 

  • van Geel B, Mook WG (1989) High resolution 14C dating of organic deposits using natural atmospheric 14C variations. Radiocarbon 31:151–155

    Google Scholar 

  • van Geel B, van der Plicht J, Kilian MR, Klaver ER, Kouwenberg JHM, Renssen H, Reynaud-Farrera I, Waterbolk HT (1998) The sharp rise of Δ14C ca. 800 cal BC: Possible causes, related climatic teleconnections and the impact on human environments. Radiocarbon 40:535–550

    Google Scholar 

  • van Geel B, Raspopov OM, Renssen H, van der Plicht J, Dergachev VA, Meijer HAJ (1999) The role of solar forcing upon climate change. Quatern Sci Rev 18:331–338

    Article  Google Scholar 

  • van Geel B, Renssen H, van der Plicht J (2001) Evidence from the past: solar forcing of climate change by way of cosmic rays and/or by solar UV? In: Kirkby J (ed) Proceedings of the Workshop on Ion-Aerosol-Cloud Interactions, CERN, Geneva, CERN 2001–007, pp 24–29

  • von Post L, Sernander R (1910) Pflanzenphysiognomische studien auf torfmooren in Narke. Livretguide des excursion en suede du 11eme congrès. Geol Int 14:1–48

    Google Scholar 

  • Weltzin JF, Bridgham SD, Pastor J, Chen J, Harth C (2003) Potential effects of warming and drying on peatland plant community composition. Global Change Biol 9:141–151

    Article  Google Scholar 

  • Woodland WA, Charman DJ, Sims PC (1998) Quantitative estimates of water tables and soil moisture in Holocene peatlands from testate amoebae. Holocene 8:261–273

    Article  Google Scholar 

  • Zielinski GA (2000) Use of paleo-records in determining variability within the volcanism-climate system. Quatern Sci Rev 19:417–438

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Dutch National Research Programme on Global Air Pollution and Climate Change (project 952275), the Research Council for Earth and Life Sciences (ALW project 750.198.12) and the Netherlands Organisation for Scientific Research (NWO). Research in Tierra del Fuego was supported through a European Community Marie Curie Fellowship to DM (Contract Number HPMF-CT-2000-01056). We are grateful to all colleagues who have collaborated with us during the development of the research projects and to laboratory staff who have made this research possible. We also thank Bas van Geel for many discussions on peat bog palaeoecology. The review comments of Dan Charman and Paula Reimer helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri Mauquoy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mauquoy, D., Yeloff, D. Raised peat bog development and possible responses to environmental changes during the mid- to late-Holocene. Can the palaeoecological record be used to predict the nature and response of raised peat bogs to future climate change?. Biodivers Conserv 17, 2139–2151 (2008). https://doi.org/10.1007/s10531-007-9222-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-007-9222-2

Keywords

Navigation