Skip to main content
Log in

Bacterial communities and their predicted function change with the life stages of invasive C-strain Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae)

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Spodoptera frugiperda is known as a highly polyphagous and invasive insect pest of maize and many other important agricultural crops. Spodoptera frugiperda is categorized into two host-adapted strains, namely ‘R’ (rice) and ‘C’ (corn). Bacterial communities that inhabit the insect body play various physiological as well as biological roles. To design effective and environmentally safe management strategies, an understanding of the diversity and functions of microbiota harbored across the development stages is essential, specifically strain-specific. The assessment of the diversity of development-associated bacteria and their predicted functions was conducted in C-strain of S. frugiperda using 16S rRNA amplicon sequencing obtained by the Illumina MiSeq technology. The results showed that the unique number of operational taxonomic units (OTUs) was higher in the pupal stage (145 OTUs) and lowest in the third instar larval stage (76 OTUs). Species richness progressively increased with metamorphosis and was significantly higher in adult females. Firmicutes and Proteobacteria were dominant phyla across all developmental stages. Firmicutes were dominant in egg (53.47%) and larval stages (52.38%), and Proteobacteria were dominant in pupa (41.26%) and adult male and female stages (54.69% and 46.49%, respectively). Enterococcus (46.74% and 12.54% in larva and pupa, respectively) was the most dominant genera at the genus level. Clostridium, Enterobacteriaceae, and Erwinia were the dominant genera in the egg and adult stages. The principle coordinate analysis (PCoA) and linear discriminant effect size (LEfSe) results showed significant differences in developmental stages. PICRUSt analysis showed that microbial communities involved in membrane transport were significantly high in third-instar larvae than in the other stages of development. Amino acid metabolism-associated microbial communities were predicted to be highest in eggs and lowest in third-instar larvae. Similarly, microbiota involved in energy metabolism was predicted to be highest in eggs and least in third-instar larvae. Additionally, the replication and repair processes associated with microbial communities were predicted highest in eggs and least in pupae. The current study provides documentation and information on symbiotic bacteria and how they work with strain-specific S. frugiperda. This will also lead to the creation of novel biological management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The raw datasets generated during the current study are deposited and available in NCBI SRA database under bioproject accession ID PRJNA979959 (https://dataview.ncbi.nlm.nih.gov/object/PRJNA979959?reviewer=propccup14a263fd5st94ai597). The partial DNA sequences generated for strain identification were deposited in NCBI GenBank under accession numbers (OQ955234—OQ955241).

References

  • Ami E, Yuval B, Jurkevitch E (2010) Manipulation of the microbiota of mass-reared Mediterranean fruit flies Ceratitis capitata (Diptera: Tephritidae) improves sterile male sexual performance. ISME J 4:28–37. https://doi.org/10.1038/ismej.2009.82

    Article  PubMed  Google Scholar 

  • Anand AA, Vennison SJ, Sankar SG, Prabhu DI, Vasan PT, Raghuraman T, Geoffrey CJ, Vendan SE (2010) Isolation and characterization of bacteria from the gut of Bombyx mori that degrade cellulose, xylan, pectin and starch and their impact on digestion. J Insect Sci (online) 10:107. https://doi.org/10.1673/031.010.10701

    Article  Google Scholar 

  • Andrews S (2010) FastQC: a quality control tool for high throughput sequence data.

  • Brinkmann N, Martens R, Tebbe CC (2008) Origin and diversity of metabolically active gut bacteria from laboratory-bred larvae of Manduca sexta (Sphingidae, Lepidoptera, Insecta). Appl Environ Microbiol 74(23):7189–7196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broderick NA, Raffa KF, Goodman RM, Handelsman J (2004) Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl Environ Microbiol 70(1):293–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26(2):266–267

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Boutros PC (2011) VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinf. https://doi.org/10.1186/1471-2105-12-35

    Article  Google Scholar 

  • Chen B, Teh BS, Sun C, Hu S, Lu X, Boland W, Shao Y (2016) Biodiversity and activity of the gut microbiota across the life history of the insect herbivore Spodoptera littoralis. Sci Rep 6(1):29505. https://doi.org/10.1038/srep29505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B, Du K, Sun C, Vimalanathan A, Liang X, Li Y, Wang B, Lu X, Li L, Shao Y (2018) Gut bacterial and fungal communities of the domesticated silkworm (Bombyx mori) and wild mulberry-feeding relatives. ISME J 12(9):2252–2262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng D, Guo Z, Riegler M, Xi Z, Liang G, Xu Y (2017) Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel). Microbiome 5:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Choudhary JS, Naaz N, Prabhakar CS, Das B, Singh AK, Bhatt BP (2021) High taxonomic and functional diversity of bacterial communities associated with Melon Fly, Zeugodacus cucurbitae (Diptera: Tephritidae). Curr Microbiol. https://doi.org/10.1007/s00284-020-02327-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Chu H, Mazmanian SK (2013) Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nat Immunol 14:668–675. https://doi.org/10.1038/ni.2635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cock MJW, Beseh PK, Buddie AG, Cafá G, Crozier J (2017) Molecular methods to detect Spodoptera frugiperda in Ghana, and implications for monitoring the spread of invasive species in developing countries. Sci Rep. https://doi.org/10.1038/s41598-017-04238-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Cruz-Esteban S, Rojas JC, Sánchez-Guillén D, Cruz-López L, Malo EA (2018) Geographic variation in pheromone component ratio and antennal responses, but not in attraction, to sex pheromones among fall armyworm populations infesting corn in Mexico. J Pest Sci 91:973–983

    Article  Google Scholar 

  • De Kwaadsteniet M, Todorov SD, Knoetze H, Dicks LM (2005) Characterization of a 3944 Da bacteriocin, produced by Enterococcus mundtii ST15, with activity against Gram-positive and Gram-negative bacteria. Int J Food Microbiol 105(3):433–444. https://doi.org/10.1016/j.ijfoodmicro.2005.03.021

    Article  CAS  PubMed  Google Scholar 

  • De Vries EJ, Jacobs G, Sabelis MW, Menken SB, Breeuwer JA (2004) Diet–dependent effects of gut bacteria on their insect host: the symbiosis of Erwinia sp. and western flower thrips. Proc R Soc London. Ser B: Biol Sci 271(1553):2171–2178

    Article  Google Scholar 

  • Dettner K (2011) Potential pharmaceuticals from insects and their cooccurring microorganisms. In Insect Biotechnology: A. Vilcinskas (ed), Biologically-Inspired Systems, Springer, Dordrecht, Vol. 2.

  • Dhariwal A, Chong J, Habib S, King IL, Agellon LB, Xia J (2017) MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res 45(W1):W180–W188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douglas AE (2015) Multiorganismal insects: Diversity and function of resident microorganisms. Ann Rev Entomol. https://doi.org/10.1146/annurev-ento-010814-020822

    Article  Google Scholar 

  • Firake DM, Behere GT, Subhash B, Prakash N (2019) Fall Armyworm: Diagnosis and Management (An extension pocket book). ICAR Research Complex for NEH Region, Umiam-793 103, Meghalaya, India. 48p.

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    CAS  PubMed  Google Scholar 

  • Frago E, Dicke M, Godfray HCJ (2012) Insect symbionts as hidden players in insect–plant interactions. Trends Ecol Evol 27(12):705–711. https://doi.org/10.1016/j.tree.2012.08.013

    Article  PubMed  Google Scholar 

  • Friedl MA, Kubicek CP, Druzhinina IS (2008) Carbon source dependence and photostimulation of conidiation in Hypocrea atroviridis. Appl Environ Microbiol 74(1):245–250

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Li W, Luo J, Zhang L, Ji J, Zhu X, Wang L, Zhang S, Cui J (2019) Biodiversity of the microbiota in Spodoptera exigua (Lepidoptera: Noctuidae). J Appl Microbiol 126(4):1199–1208. https://doi.org/10.1111/jam.14190

    Article  CAS  PubMed  Google Scholar 

  • Gichuhi J, Sevgan S, Khamis F, Van den Berg J, du Plessis H, Ekesi S, Herren JK (2020) Diversity of fall armyworm, Spodoptera frugiperda and their gut bacterial community in Kenya. Peer J 5(8):e8701. https://doi.org/10.7717/peerj.8701

    Article  CAS  Google Scholar 

  • Goergen G, Kumar PL, Sankung SB, Togola A, Tamò M (2016) First report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS ONE. https://doi.org/10.1371/journal.pone.0165632

    Article  PubMed  PubMed Central  Google Scholar 

  • Gouin A, Bretaudeau A, Nam K et al (2017) Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges. Sci Rep 7:11816. https://doi.org/10.1038/s41598-017-10461-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic biology 59(3):307–321

    Article  CAS  PubMed  Google Scholar 

  • Hammer Ø, Harper DA (2001) Past: paleontological statistics software package for educaton and data anlysis. Palaeontol Electron 4(1):1

    Google Scholar 

  • Han S, Zhou Y, Wang D, Qin Q, Song P, He Y (2023) Effect of different host plants on the diversity of gut bacterial communities of Spodoptera frugiperda (JE Smith, 1797). Insects 14(3):264. https://doi.org/10.3390/insects14030264

    Article  PubMed  PubMed Central  Google Scholar 

  • He LM, Wu QL, Gao XW, Wu KM (2021) Population life tables for the invasive fall armyworm, Spodoptera frugiperda fed on major oil crops planted in China. J Integr Agricult 20(3):745–754. https://doi.org/10.1016/S2095-3119(20)63274-9

    Article  Google Scholar 

  • Ingber DA, Mason CE, Flexner L (2018) Cry1 Bt susceptibilities of fall armyworm (Lepidoptera: Noctuidae) host strains. J Econ Entomol 111(1):361–368

    Article  CAS  PubMed  Google Scholar 

  • Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glockner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41(1):e1. https://doi.org/10.1093/nar/gks808

    Article  CAS  PubMed  Google Scholar 

  • Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79(17):5112–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krueger F, James F, Ewels P, Afyounian E, Schuster-Boeckler B (2021) FelixKrueger/TrimGalore: v0.6.7—DOI via Zenodo (0.6.7). 10.5281/zenodo.5127899.

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Choudhary JS, Naik SK, Mondal S, Mishra JS, Poonia SP, Kumar S, Hans H, Kumar S, Das A, Kumar V, Bhatt BP, Chaudhari SK, Malik RK, Craufurd P, McDonald A, Sherpa SR (2023) Influence of conservation agriculture-based production systems on bacterial diversity and soil quality in rice-wheat-greengram cropping system in eastern Indo-Gangetic Plains of India. Front Microbiol 14:1181317. https://doi.org/10.3389/fmicb.2023.1181317

    Article  PubMed  PubMed Central  Google Scholar 

  • Landolt PJ, Adams T, Zack RS, Crabo L (2011) A diversity of moths (Lepidoptera) trapped with two feeding attractants. Ann Entomol Soc Am 104(3):498–506. https://doi.org/10.1603/AN10189

    Article  CAS  Google Scholar 

  • Langille MGI, Zaneveld J, Caporaso JG, McDonald D et al (2013) Predictive functional profing of microbial communities using 16S rRNA marker gene sequence. Nat Biotechnol 31(9):814–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letunic I, Bork P (2021) Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49(1):293–296. https://doi.org/10.1093/nar/gkab301

    Article  CAS  Google Scholar 

  • Li YY, Floate KD, Fields PG, Pang BP (2014) Review of treatment methods to remove Wolbachia bacteria from arthropods. Symbiosis 62:1–15. https://doi.org/10.1007/s13199-014-0267-1

    Article  CAS  Google Scholar 

  • Li DD, Li JY, Hu ZQ, Liu TX, Zhang SZ (2022) Fall armyworm gut bacterial diversity associated with different developmental stages, environmental habitats, and diets. Insects. https://doi.org/10.3390/insects13090762

    Article  PubMed  PubMed Central  Google Scholar 

  • Lima ER, McNeil JN (2009) Female sex pheromones in the host races and hybrids of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Chemoecology 19:29–36

    Article  CAS  Google Scholar 

  • Lü D, Dong Y, Yan Z, Liu X, Zhang Y, Yang D, He K, Wang Z, Wang P, Yuan X, Li Y (2023) Dynamics of gut microflora across the life cycle of Spodoptera frugiperda and its effects on the feeding and growth of larvae. Pest Manag Sci 79(1):173–182

    Article  PubMed  Google Scholar 

  • Lv D, Liu X, Dong Y, Yan Z, Zhang X, Wang P, Yuan X, Li Y (2021) Comparison of gut bacterial communities of fall armyworm (Spodoptera frugiperda) reared on different host plants. Int J Mol Sci 22(20):11266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mano H, Morisaki H (2008) Endophytic bacteria in the rice plant. Microbes Environ 23(2):109–117

    Article  PubMed  Google Scholar 

  • Mason CJ, Raffa KF (2014) Acquisition and structuring of midgut bacterial communities in gypsy moth (Lepidoptera: Erebidae) larvae. Environ Entomol 43(3):595–604

    Article  PubMed  Google Scholar 

  • Mason CJ, St. Clair A, Peiffer M, Gomez E, Jones AG, Felton GW, Hoover K (2020) Diet influences proliferation and stability of gut bacterial populations in herbivorous lepidopteran larvae. PLoS ONE 15(3):e0229848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montezano DG, Specht A, Sosa-Gómez DR, Roque-Specht VF, Sousa-Silva JC, Paula-Moraes SV, Peterson JA, Hunt TE (2018) Host Plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. African Entomology. Entomol Soc Southern Africa. https://doi.org/10.4001/003.026.0286.

  • Naaz N, Choudhary JS, Prabhakar CS, Moanaro Maurya S (2016) Identification and evaluation of cultivable gut bacteria associated with peach fruit fly, Bactrocera zonata (Diptera: Tephritidae). Phytoparasitica 44(2):165–176. https://doi.org/10.1007/s12600-016-0518-1

    Article  CAS  Google Scholar 

  • Naaz N, Choudhary JS, Choudhary A, Dutta A, Das B (2020) Developmental stage-associated microbiota profile of the peach fruit fly, Bactrocera zonata (Diptera: Tephritidae) and their functional prediction using 16S rRNA gene metabarcoding sequencing. 3 Biotech. https://doi.org/10.1007/s13205-020-02381-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Naaz N, Choudhary JS (2021) Metagenomics of the melon fly, Zeugodacus cucurbitae: Variation in bacterial communities across different developmental stages. Insect Environ 24.

  • Nagoshi RN, Goergen G, Plessis HD, Berg J, Meagher R Jr (2019) Genetic comparisons of fall armyworm populations from 11 countries spanning sub-Saharan Africa provide insights into strain composition and migratory behaviors. Sci Rep 9:831. https://doi.org/10.1038/s41598-019-44744-9

    Article  CAS  Google Scholar 

  • Oliveira NC, Rodrigues PAP, Cônsoli FL (2022) Host-Adapted Strains of Spodoptera frugiperda Hold and Share a Core Microbial Community Across the Western Hemisphere. Microb Ecol. https://doi.org/10.1007/s00248-022-02008-6

    Article  PubMed  Google Scholar 

  • Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30(21):3123–3124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raymann K, Shaffer Z, Moran NA (2017) Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS Biol 15(3):e2001861. https://doi.org/10.1371/journal.pbio.2001861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584. https://doi.org/10.7717/peerj.2584

    Article  PubMed  PubMed Central  Google Scholar 

  • Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12(6):R60. https://doi.org/10.1186/gb-2011-12-6-r60

    Article  PubMed  PubMed Central  Google Scholar 

  • Shao Y, Chen B, Sun C, Ishida K, Hertweck C, Boland W (2017) Symbiont-derived antimicrobials contribute to the control of the Lepidopteran gut microbiota. Cell Chem Biol 24:66–75

    Article  CAS  PubMed  Google Scholar 

  • Sharanabasappa K, CM, Asokan R, Swamy HM, Maruthi MS, Pavithra HB, Hegde K, Navi S, Prabhu ST, Goergen G (2018) First report of the fall armyworm, Spodoptera frugiperda (J E Smith) (Lepidoptera: Noctuidae), an alien invasive pest on maize in India. Pest Manag Horticult Ecosyst 24:23–29

    Google Scholar 

  • Silva-Brandão KL, Horikoshi RJ, Bernardi D, Omoto C, Figueira A, Brandão MM (2017) Transcript expression plasticity as a response to alternative larval host plants in the speciation process of corn and rice strains of Spodoptera frugiperda. BMC Genomics 18:1–15

    Article  Google Scholar 

  • Snyman M, Gupta AK, Bezuidenhout CC, Claassens S, Van den Berg J (2016) Gut microbiota of Busseola fusca (Lepidoptera: Noctuidae). World J Microbiol Biotechnol 32:1–9

    Article  CAS  Google Scholar 

  • Sood P, Prabhakar CS (2009) Molecular diversity and antibiotic sensitivity of gut bacterial symbionts of fruit fly Bactrocera tau Walker. J Biol Control 23(3):213–220

    Google Scholar 

  • Spark AN (1979) A review of the biology of the fall armyworm Author (s): Alton N. Sparks Published by: Florida Entomological Society. Florida Entomol 62(2):82–87

    Google Scholar 

  • Suby SB, Soujanya PL, Yadava P, Patil J, Subaharan K, Prasad GS, Babu KS, Jat SL, Yathish KR, Vadassery J, Kalia VK, Bakthavatsalam N, Shekhar JC, Rakshit S (2020) Invasion of fall armyworm (Spodoptera frugiperda) in India: nature, distribution, management and potential impact. Curr Sci 119:44–51

    Article  Google Scholar 

  • Suen G, Scott JJ, Aylward FO, Adams SM, Tringe SG, Pinto-Tomás AA et al (2010) An insect herbivore microbiome with high plant biomass-degrading capacity. PLoS Genet 6(9):e1001129. https://doi.org/10.1371/journal.pgen.1001129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tagliavia M, Messina E, Manachini B, Cappello S, Quatrini P (2014) The gut microbiota of larvae of Rhynchophorus ferrugineus Oliver (Coleoptera: Curculionidae). BMC Microbiol 14(1):1–11

    Article  Google Scholar 

  • Tang X, Adler PH, Vogel H, Ping L (2012) Gender-specific bacterial composition of black flies (Diptera: Simuliidae). FEMS Microbiol Ecol 80(3):659–670. https://doi.org/10.1111/j.1574-6941.2012.01335.x

    Article  CAS  PubMed  Google Scholar 

  • Van Arnam EB, Currie CR, Clardy J (2018) Defense contracts: molecular protection in insect-microbiome symbioses. Chem Soc Rev 47:1638–1651

    Article  PubMed  Google Scholar 

  • Wang X, Sun S, Yang X, Cheng J, Wei H, Li Z, Michaud JP, Liu X (2020) Variability of gut microbiota across the life cycle of Grapholita molesta (Lepidoptera: Tortricidae). Front Microbiol 11:1366

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y-P, Liu X, Yi C-Y, Chen X-Y, Liu C-H, Zhang C-C, Chen Q-D, Chen S, Liu H-L, Pu D-Q (2023) The adaptive evolution in the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) revealed by the diversity of larval gut bacteria. Genes. https://doi.org/10.3390/genes14020321

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu X, Xia X, Chen J, Gurr GM, You M (2019) Effects of different diets on the diversity of larval gut bacteria of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Acta Entomol Sin 62(10):1172–1185

    Google Scholar 

  • Xia X, Sun B, Gurr GM, Vasseur L, Xue M, You M (2018) Gut microbiota mediate insecticide resistance in the diamondback moth, Plutella xylostella (L.). Front Microbiol. https://doi.org/10.3389/fmicb.2018.00025

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia X, Lan B, Tao X, Lin J, You M (2020) Characterization of Spodoptera litura gut bacteria and their role in feeding and growth of the host. Front Microbiol. https://doi.org/10.3389/fmicb.2020.01492

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiang H, Wei GF, Jia S, Huang J, Miao XX, Zhou Z, Zhao LP, Huang YP (2006) Microbial communities in the larval midgut of laboratory and field populations of cotton bollworm (Helicoverpa armigera). Can J Microbiol 52(11):1085–1092. https://doi.org/10.1139/W06-064

    Article  CAS  PubMed  Google Scholar 

  • Xue H, Zhu X, Wang L, Zhang K, Li D, Ji J, Niu L, Wu C, Gao X, Luo J, Cui J (2021) Gut bacterial diversity in different life cycle stages of Adelphocoris suturalis (Hemiptera: Miridae). Front Microbiol 12:670383. https://doi.org/10.3389/fmicb.2021.670383

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan X, Zhang X, Liu X, Dong Y, Yan Z, Lv D, Wang P, Li Y (2021) Comparison of gut bacterial communities of Grapholita molesta (Lepidoptera: Tortricidae) reared on different host plants. Int J Mol Sci 22(13):6843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are acknowledging the University Grant Commission (UGC), New Delhi for granting scholarship to the first author under the CSIR-UGC net program. We thank the ICAR-Research Complex for Eastern Region, Farming System Research Centre for Hill and Plateau Region (ICAR RCER-FSRCHPR) Plandu, Ranchi for providing field and laboratories facilities throughout the investigation. We authors are also very thankful to the editor and anonymous reviewers for their thoughtful comments to improve manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.B., J.S.C., A.K.T., N.N., A.K., P.K.O., S.K.S., K.K. actively participated in conducting the research; S.B. and J.S.C. completed the experiment; S.B. and J.S.C. analysed the data; S.B. and J.S.C. edited the manuscript. All the authors approved the final manuscript.

Corresponding author

Correspondence to Jaipal Singh Choudhary.

Ethics declarations

Conflict of interests

The authors declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 504 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banra, S., Choudhary, J.S., Thakur, A.K. et al. Bacterial communities and their predicted function change with the life stages of invasive C-strain Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae). Biol Invasions (2024). https://doi.org/10.1007/s10530-024-03288-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10530-024-03288-4

Keywords

Navigation