Aiello-Lammens ME, Boria RA, Radosavljevic A et al. (2014) spThin: functions for spatial thinning of species occurrence records for use in ecological models
Andersen RA, Berges JA, Harrison PJ et al (2005) Appendix a—recipes for freshwater and seawater media. In: Anderson RA (ed) Algal culturing techniques. Academic Press, Burlington
Google Scholar
Assis J, Tyberghein L, Bosch S et al (2017) Bio-ORACLE v2.0: extending marine data layers for bioclimatic modelling. Glob Ecol Biogeogr 27:277–284
Article
Google Scholar
Assis J, Araújo MB, Serrão EA (2018) Projected climate changes threaten ancient refugia of kelp forests in the North Atlantic. Glob Change Biol 24:e55–e66
Article
Google Scholar
Bartsch I, Paar M, Fredriksen S et al (2016) Changes in kelp forest biomass and depth distribution in Kongsfjorden, Svalbard, between 1996–1998 and 2012–2014 reflect Arctic warming. Polar Biol 39:2021–2036
Article
Google Scholar
Boo GH, Mansilla A, Nelson W et al (2014) Genetic connectivity between trans-oceanic populations of Capreolia implexa (Gelidiales, Rhodophyta) in cool temperate waters of Australasia and Chile. Aquat Bot 119:73–79
Article
Google Scholar
Buckley LB, Urban MC, Angilletta MJ et al (2010) Can mechanism inform species’ distribution models? Ecol Lett 13:1041–1054
PubMed
Article
Google Scholar
Camus PA (2001) Biogeografia marina de Chile continental. Rev Chil Hist Nat 74:587–617
Article
Google Scholar
Casas G, Scrosati R, Piriz ML (2004) The invasive kelp Undaria pinnatifida (Phaeophyceae, Laminariales) reduces native seaweed diversity in Nuevo Gulf (Patagonia, Argentina). Biol Invasions 6:411–416
Article
Google Scholar
Castilla JC, Uribe M, Bahamonde N et al (2005) Down under the southeastern Pacific: marine non-indigenous species in Chile. Biol Invasions 7:213–232
Article
Google Scholar
Chen I-C, Hill JK, Ohlemüller R et al (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026
CAS
PubMed
Article
Google Scholar
Christie H, Jørgensen NM, Norderhaug KM et al (2003) Species distribution and habitat exploitation of fauna associated with kelp (Laminaria hyperborea) along the Norwegian coast. J Mar Biol Assoc UK 83:687–699
Article
Google Scholar
Diamond SE, Nichols LM, McCoy N et al (2012) A physiological trait-based approach to predicting the responses of species to experimental climate warming. Ecology 93:2305–2312
PubMed
Article
Google Scholar
Duan R-Y, Kong X-Q, Huang M-Y et al (2014) The predictive performance and stability of six species distribution models. PLoS ONE 9(11):e112764. https://doi.org/10.1371/journal.pone.0112764
PubMed
PubMed Central
Article
CAS
Google Scholar
Fernández Á, Arenas F, Trilla A et al (2015) Additive effects of emersion stressors on the ecophysiological performance of two intertidal seaweeds. Mar Ecol Prog Ser 536:135–147
Article
Google Scholar
Fick SE, Hijmans RJW (2017) New 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37(2):4302–4315
Article
Google Scholar
GBIF.org (2018) GBIF occurrence download https://doi.org/10.15468/dl.1rux44
Guiry M, Womersley H (1993) Capreolia implexa gen. et sp. nov. (Gelidiales, Rhodophyta) in Australia and New Zealand; an intertidal mat-forming alga with an unusual life history. Phycologia 32:266–277
Article
Google Scholar
Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009
PubMed
Article
Google Scholar
Harley CD, Randall Hughes A, Hultgren KM et al (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241
PubMed
Article
Google Scholar
Haye PA, Segovia NI, Muñoz-Herrera NC et al (2014) Phylogeographic structure in benthic marine invertebrates of the southeast Pacific coast of Chile with differing dispersal potential. PLoS ONE 9:e88613
PubMed
PubMed Central
Article
CAS
Google Scholar
Hijmans RJ, van Etten J, Cheng J, et al. (2017) ‘raster’ - Geographic Data Analysis and Modeling
IPCC (2014) Climate change 2014: synthesis report. contribution of working groups I, II and III to the 5th assessment report of the intergovernmental panel on climate change In: Core Writing Team, Pachauri RK, Meyer LA (eds) IPCC, Geneva, Switzerland, 151 pp
Kearney M, Porter W (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol Lett 12:334–350
PubMed
Article
Google Scholar
Kim M-S, Yang EC, Mansilla A et al (2004) Recent introduction of Polysiphonia morrowii (Ceramiales, Rhodophyta) to Punta Arenas, Chile. Bot Mar 47:389–394
Article
Google Scholar
Klein J, Verlaque M (2008) The Caulerpa racemosa invasion: a critical review. Mar Pollut Bull 56:205–225
CAS
PubMed
Article
Google Scholar
Koch K, Thiel M, Tellier F et al (2015) Species separation within the Lessonia nigrescens complex (Phaeophyceae, Laminariales) is mirrored by ecophysiological traits. Bot Mar 58:81–92
CAS
Article
Google Scholar
Krause-Jensen D, Kühl M, Christensen PB et al (2007) Benthic primary production in Young Sound, Northeast Greenland. Bioscience 58:160–173
Google Scholar
Krause-Jensen D, Marbà N, Olesen B et al (2012) Seasonal sea ice cover as principal driver of spatial and temporal variation in depth extension and annual production of kelp in Greenland. Glob Change Biol 18:2981–2994
Article
Google Scholar
Leung B, Lodge DM, Finnoff D et al (2002) An ounce of prevention or a pound of cure: bioeconomic risk analysis of invasive species. Proc R Soc Lond Biol 269:2407–2413
Article
Google Scholar
Linares C, Cebrian E, Coma R (2012) Effects of turf algae on recruitment and juvenile survival of gorgonian corals. Mar Ecol Prog Ser 452:81–88
Article
Google Scholar
Lüning K (1985) Meeresbotanik: Verbreitung, Ökophysiologie und Nutzung der marinen Makroalgen. Thieme, Stuttgart
Google Scholar
Mac Nally R (2000) Regression and model-building in conservation biology, biogeography and ecology: the distinction between—and reconciliation of—‘predictive’ and ‘explanatory’ models. Biodivers Conserv 9:655–671
Article
Google Scholar
Martínez B, Viejo RM, Carreño F et al (2012) Habitat distribution models for intertidal seaweeds: responses to climatic and non-climatic drivers. J Biogeogr 39:1877–1890
Article
Google Scholar
Martínez B, Arenas F, Trilla A et al (2015) Combining physiological threshold knowledge to species distribution models is key to improving forecasts of the future niche for macroalgae. Glob Chang Biol 21:1422–1433
PubMed
Article
Google Scholar
Martínez B, Radford B, Thomsen MS et al (2018) Distribution models predict large contractions of habitat-forming seaweeds in response to ocean warming. Divers Distrib 24:1350–1366
Article
Google Scholar
Mellin C, Lurgi M, Matthews S et al (2016) Forecasting marine invasions under climate change: biotic interactions and demographic processes matter. Biol Cons 204:459–467
Article
Google Scholar
Miller IJ (2003) The chemical structure of galactans from some New Zealand red algae. Bot Mar 46:572–577
CAS
Google Scholar
Nelson W (2013) New Zealand seaweeds: an identification guide. Te Papa Press, Wellington
Google Scholar
Nelson W, Farr T, Broom J (2006) Phylogenetic diversity of New Zealand Gelidiales as revealed by rbcL sequence data. J Appl Phycol 18:653–661
Article
Google Scholar
Peters AF, Breeman A (1993) Temperature tolerance and latitudinal range of brown algae from temperate Pacific South America. Mar Biol 115:143–150
Article
Google Scholar
Peterson AT (2005) Predicting potential geographic distributions of invading species. Curr Sci Bangalore 89:9
Google Scholar
Peterson AT, Soberón J, Pearson RG et al (2011) Ecological niches and geographic distributions. Princeton University Press, Princeton
Book
Google Scholar
Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259
Article
Google Scholar
Phillips SJ, Dudík M, Schapire RE (2016) Maxent software for modeling species niches and distributions. 3.4.1 edn
Pimentel D, Lach L, Zuniga R et al (2000) Environmental and economic costs of nonindigenous species in the United States. Bioscience 50:53–65
Article
Google Scholar
Poloczanska ES, Hawkins SJ, Southward AJ et al (2008) Modeling the response of populations of competing species to climate change. Ecology 89:3138–3149
PubMed
Article
Google Scholar
Raffo MP, Eyras MC, Iribarne OO (2009) The invasion of Undaria pinnatifida to a Macrocystis pyrifera kelp in Patagonia (Argentina, south–west Atlantic). J Mar Biol Assoc UK 89:1571–1580
Article
Google Scholar
R-Core-Team, (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
Google Scholar
Ruiz GM, Carlton JT, Grosholz ED et al (1997) Global invasions of marine and estuarine habitats by non-indigenous species: mechanisms, extent, and consequences. Am Zool 37:621–632
Article
Google Scholar
Seebens H, Schwartz N, Schupp PJ et al (2016) Predicting the spread of marine species introduced by global shipping. Proc Natl Acad Sci USA 113:5646–5651
CAS
PubMed
PubMed Central
Article
Google Scholar
Sorte CJ, Williams SL, Carlton JT (2010) Marine range shifts and species introductions: comparative spread rates and community impacts. Glob Ecol Biogeogr 19:303–316
Article
Google Scholar
Sousa WP (1979) Experimental investigations of disturbance and ecological succession in a rocky intertidal algal community. Ecol Monogr 49:227–254
Article
Google Scholar
Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293. https://doi.org/10.1126/science.3287615
CAS
PubMed
Article
Google Scholar
Tatewaki M, Provasoli L (1964) Vitamin requirements of three species of Antithamnion. Bot Mar 6:193–203
CAS
Article
Google Scholar
Thiel M, Macaya EC, Acuna E et al (2007) The humboldt current system of northern and central Chile: oceanographic processes, ecological interactions and socioeconomic feedback. Oceanogr Mar Biol Annu, Rev
Book
Google Scholar
Thuiller W, Richardson DM, Pyšek P et al (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Change Biol 11:2234–2250
Article
Google Scholar
Thuiller W, Georges D, Engler R, et al (2016) biomod2
Vega GC, Pertierra LR, Olalla-Tarraga MA (2017) MERRAclim, a high-resolution global dataset of remotely sensed bioclimatic variables for ecological modelling. Sci Data 4:170078
Article
Google Scholar
Wernberg T, Russell Bayden D, Thomsen Mads S et al (2011) Seaweed communities in retreat from ocean warming. Curr Biol 21:1828–1832
CAS
PubMed
Article
Google Scholar
Wiencke C, Roleda MY, Gruber A et al (2006) Susceptibility of zoospores to UV radiation determines upper depth distribution limit of Arctic kelps: evidence through field experiments. J Ecol 94:455–463
Article
Google Scholar
Williams SL, Smith JE (2007) A global review of the distribution, taxonomy, and impacts of introduced seaweeds. Annu Rev Ecol Evol Syst 38:327–359
Article
Google Scholar
Womersley HBS (1994) The marine benthic flora of Southern Australia. Rhodophyta. Part IIIA, Bangiophyceae and Florideophyceae (to Gigartinales). Australian Biological Resources Study, Canberra, Australia
Wotton DM, O’Brien C, Stuart MD et al (2004) Eradication success down under: heat treatment of a sunken trawler to kill the invasive seaweed Undaria pinnatifida. Mar Pollut Bull 49:844–849
CAS
PubMed
Article
Google Scholar