Biological Invasions

, Volume 19, Issue 12, pp 3613–3627 | Cite as

Naturalization of ornamental plant species in public green spaces and private gardens

  • Katharina Mayer
  • Emily Haeuser
  • Wayne Dawson
  • Franz Essl
  • Holger Kreft
  • Jan Pergl
  • Petr Pyšek
  • Patrick Weigelt
  • Marten Winter
  • Bernd Lenzner
  • Mark van KleunenEmail author


Ornamental horticulture is the most important pathway for alien plant introductions worldwide, and consequently, invasive spread of introduced plants often begins in urban areas. Although most introduced ornamental garden-plant species are locally not naturalized yet, many of them have shown invasion potential elsewhere in the world, and might naturalize when climate changes. We inventoried the planted flora of 50 public and 61 private gardens in Radolfzell, a small city in southern Germany, to investigate whether local naturalization success of garden plants is associated with their current planting frequency, climatic suitability (as assessed with climatic niche modelling) and known naturalization status somewhere in the world. We identified 954 introduced garden-plant species, of which 48 are already naturalized in Radolfzell and 120 in other parts of Germany. All currently naturalized garden plants in Radolfzell have a climatic suitability probability of ≥ 0.75 and are naturalized in ≥ 13 out of 843 regions globally. These values are significantly higher than those of garden plants that have not become locally naturalized yet. Current planting frequencies, however, were not related to current naturalization success. Using the identified local naturalization thresholds of climatic suitability and global naturalization frequency, and climate projections for the years 2050 and 2070, we identified 45 garden-plant species that are currently not naturalized in Radolfzell but are likely to become so in the future. Although our approach cannot replace a full risk assessment, it is well-suited and applicable as one element of a screening or horizon scanning-type approach.


Climate change Exotic plants Horticulture Horizon scanning Invasion risk Non-native plants Risk assessment Urban green areas 



We thank our collaborators at the Deutsche Umwelthilfe (DUH), Tobias Herbst and Robert Spreter, and Mario Jost and all other gardeners who assisted in species identification. We thank Ewald Weber for providing his unpublished list of invasive plant species of the world. This research was funded by the Klimopass Programm of the Landesanstalt für Umwelt, Messungen und Naturschutz, Baden-Württemberg (Project No. 4500347101/23 to the DUH and MvK), the German Research Foundation (DFG, Project No. KL1866-9/1), and the ERA-Net BiodivERsA, with the national funders ANR (French National Research Agency), DFG, and FWF (Austrian Science Fund), part of the 2012–2013 BiodivERsA call for research proposals. PP and JP were supported by Project No. 14-36079G Centre of Excellence PLADIAS (Czech Science Foundation), DG16P02M041 (NAKI II of the Ministry of Culture of the Czech Republic) and long-term research development project RVO 67985939 (The Czech Academy of Sciences). An early version of the paper was presented at a workshop on ‘Non-native species in urban environments’ hosted and funded by the DST-NRF Centre of Excellence for Invasion Biology (CIB) in Stellenbosch, South Africa, in November 2016. We appreciate the constructive advice provided by delegates at the workshop and two anonymous reviewers.

Supplementary material

10530_2017_1594_MOESM1_ESM.docx (602 kb)
Supplementary material 1 (DOCX 602 kb)
10530_2017_1594_MOESM2_ESM.xlsx (154 kb)
Supplementary material 2 (XLSX 153 kb)


  1. Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232CrossRefGoogle Scholar
  2. Aronson MFJ, La Sorte FA, Nilon CH, Katti M, Goddard MA, Lepczyk CA, Warren PS, Williams NSG, Ciliers S, Clarkson B, Dobbs C, Dolan R, Hedblom M, Klotz S, Kooijmans JL, Kühn I, MacGregor-Fors I, McDonnell M, Mörtberg U, Pyšek P, Siebert S, Sushinsky J, Werner P, Winter M (2014) A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc R Soc B 281:20133330CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baker HG (1965) Characteristics and modes of origin of weeds. In: Baker HG, Stebbins GL (eds) The genetics of colonizing species. Academic Press, New York, pp 147–172Google Scholar
  4. Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol Evol 3:327–338CrossRefGoogle Scholar
  5. Broennimann O, Treier UA, Müller-Schärer H, Thuiller W, Peterson AT, Guisan A (2007) Evidence of climatic niche shift during biological invasion. Ecol Lett 10:701–709CrossRefPubMedGoogle Scholar
  6. Brummit RK (2001) World geographical scheme for recording plant distributions, vol 2. Hunt Institute for Botanical Documentation, PittsburghGoogle Scholar
  7. Bucharová A, van Kleunen M (2009) Introduction history and species characteristics partly explain naturalization success of North American woody species in Europe. J Ecol 87:230–238CrossRefGoogle Scholar
  8. Cayuela L, Stein A, Oksanen J (2017) Taxonstand: taxonomic standardization of plant species names. R package version 2.0. R Foundation for Statistical Computing.
  9. CBD (2000) Decision V/8. Alien species that threaten ecosystems, habitats or species. UNEP/CBD/COP/5/8. Secretariat of the Convention on Biological Diversity, Nairobi, KenyaGoogle Scholar
  10. Chamberlain S, Ram K, Barve V, Mcglinn D (2015). rgbif: Interface to the Global Biodiversity Information Facility API. R package version 0.8.0.
  11. Clement EJ, Foster MC (1994) Alien plants of the British Isles. Botanical Society of the British Isles, LondonGoogle Scholar
  12. Cullen J, Knees SG, Cubey HS (2011) The European garden flora: manual for the identification of plants cultivated in Europe, both out-of-doors and under glass, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  13. Daehler CC, Strong DR (1993) Predictions and biological invasions. Trends Ecol Evol 8:380CrossRefPubMedGoogle Scholar
  14. Dehnen-Schmutz K (2011) Determining non-invasiveness in ornamental plants to build green lists. J Appl Ecol 48:1374–1380CrossRefGoogle Scholar
  15. Dehnen-Schmutz K, Touza J, Perrings C, Williamson M (2007) The horticultural trade and ornamental plant invasions in Britain. Conserv Biol 21:224–231CrossRefPubMedGoogle Scholar
  16. Dellinger AS, Essl F, Hojsgaard D, Kirchheimer B, Klatt S, Dawson W, Pergl J, Pyšek P, van Kleunen M, Weber E, Winter M, Hörandl E, Dullinger S (2016) Niche dynamics of alien species do not differ among sexual and apomictic flowering plants. New Phytol 209:1313–1323CrossRefPubMedGoogle Scholar
  17. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46CrossRefGoogle Scholar
  18. Dullinger I, Wessely J, Bossdorf O, Dawson W, Essl F, Gattringer A, Klonner G, Kuttner M, Moser D, Pergl J, Pyšek Thuiller W, van Kleunen M, Weigelt P, Winter M, Dullinger S (2017) Climate change will increase naturalization risk from garden plants in Europe. Glob Ecol Biogeogr 26:43–53CrossRefPubMedGoogle Scholar
  19. Essl F, Dullinger S, Rabitsch W, Hulme PE, Hülber K, Jarošík V, Kleinbauer I, Krausmann F, Kühn I, Nentwig W, Vilà Genovesi P, Gherardi F, Despres-Loustau M-L, Roques A, Pyšek P (2010) Socioeconomic legacy yields an invasion debt. PNAS 108:203–207CrossRefPubMedPubMedCentralGoogle Scholar
  20. EU (2014) Regulation (EU) No. 1143/2014 of the European Parliament and of the Council of 22 October 2014 on the prevention and management of the introduction and spread of invasive alien species. Official Journal of the European Union L 317/35Google Scholar
  21. Faulkner KT, Robertson MP, Rouget M, Wilson JRU (2016) Understanding and managing the introduction pathways of alien taxa: South Africa as a case study. Biol Invasions 18:73–87CrossRefGoogle Scholar
  22. Feng Y, Maurel N, Wang Z, Ning L, Yu F-H, van Kleunen M (2016) Introduction history, climatic suitability, native range size, species traits and their interactions explain establishment of Chinese woody species in Europe. Glob Ecol Biogeogr 25:1355–1366CrossRefGoogle Scholar
  23. Groves RH (1998) Recent incursions of weeds to Australia 1971–1995. CRC for Weed Management Systems technical series, vol 3. CRC for Weed Management Systems, Adelaide, pp 1–74Google Scholar
  24. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009CrossRefGoogle Scholar
  25. Hanspach J, Kühn I, Pyšek P, Boos E, Klotz S (2008) Correlates of naturalization and occupancy of introduced ornamentals in Germany. Perspect Plant Ecol Evol Syst 10:241–250CrossRefGoogle Scholar
  26. Heywood VH, Sharrock S (2013) European code of conduct for botanic gardens on invasive alien species. Council of Europe Publishing, StrasbourgGoogle Scholar
  27. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  28. IPCC (2013) Climate Change 2013. The physical science basis. Fifth assessment report of the Intergovernmental Panel of Climate ChangeGoogle Scholar
  29. Keller RP, Lodge DM, Finnoff D (2007) Risk assessment for invasive species produces net bioeconomic benefits. Proc Natl Acad Sci 104:203–207CrossRefPubMedGoogle Scholar
  30. Kendal D, Williams NSG, Williams KJH (2012) A cultivated environment: exploring the global distribution of plants in gardens, parks and streetscapes. Urban Ecosyst 15:637–652CrossRefGoogle Scholar
  31. Klonner G, Dullinger I, Wessely J, Bossdorf O, Carboni M, Dawson W, Essl F, Gattringer A, Haeuser E, van Kleunen M, Kreft H, Moser D, Pergl J, Pyšek P, Thuiller W, Weigelt P, Winter M, Dullinger S (2017) Will climate change increase hybridization risk between potential plant invaders and their congeners in Europe? Divers Distrib. doi: 10.1111/ddi.12578 PubMedPubMedCentralGoogle Scholar
  32. Kowarik I (1995) Time lags in biological invasions with regard to success and failure of alien species. In: Pyšek P, Prach K, Rejmánek M, Wade M (eds) Plant invasions—general aspects and special problems. SPB Academic Publishing, Amsterdam, pp 15–38Google Scholar
  33. Křivánek M, Pyšek P, Jarošík V (2006) Planting history and propagule pressure as predictors of invasions by woody species in a temperate region. Conserv Biol 20:1487–1498CrossRefPubMedGoogle Scholar
  34. Kueffer C, Pyšek P, Richardson DM (2013) Integrative invasion science: model systems, multi-site studies, focused meta-analysis and invasion syndromes. New Phytol 200:615–633CrossRefPubMedGoogle Scholar
  35. Kühn I, Klotz S (2002) Floristischer Status und gebietsfremde Arten. Schriftenreihe Vegetationskunde 38:47–56Google Scholar
  36. Kühn I, Brandl R, Klotz S (2004) The flora of German cities is naturally species rich. Evol Ecol Res 6:749–764Google Scholar
  37. Lappen B (2009) Der Katalog. Baumschulen Lappen, NettetalGoogle Scholar
  38. Lehan NE, Murphy JR, Thorburn LP, Bradley BA (2013) Accidental introductions are an important source of invasive plants in the continental United States. Am J Bot 100:1287–1293CrossRefPubMedGoogle Scholar
  39. Lin BB, Meyers J, Beaty M, Barnett GB (2016) Urban green infrastructure impacts on climate regulation services in Sydney, Australia. Sustainability 8:788CrossRefGoogle Scholar
  40. Lindemann-Matthies P, Brieger H (2016) Does urban gardening increase aesthetic quality of urban areas? A case study from Germany. Urban For Urban Green 17:33–41CrossRefGoogle Scholar
  41. Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228CrossRefPubMedGoogle Scholar
  42. Mack RN, Erneberg M (2002) The United States naturalized flora: largely the product of deliberate introductions. Ann Mo Bot Gard 89:176–189CrossRefGoogle Scholar
  43. Maggini R, Lehmann A, Zimmermann NE, Guisan A (2006) Improving generalized regression analysis for the spatial prediction of forest communities. J Biogeogr 33:1729–1749CrossRefGoogle Scholar
  44. Maurel N, Hanspach J, Kühn I, Pyšek P, van Kleunen M (2016) Introduction bias affects relationships between characteristics and naturalization success of ornamental alien plants. Glob Ecol Biogeogr 25:1500–1509CrossRefGoogle Scholar
  45. Meyer C, Weigelt P, Kreft H (2016) Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol Lett 19:992–1006CrossRefPubMedGoogle Scholar
  46. Nehring S, Kowarik I, Rabitsch W, Essl F (2013) Naturschutzfachliche Invasivitätsbewertungen für in Deutschland wild lebende gebietsfremde Gefäßpflanzen. BfN-Skripten 352:1–202Google Scholar
  47. Netzwerk Phytodiversität Deutschland & Bundesamt für Naturschutz (2013) Verbreitungsatlas der Farn- und Blütenpflanzen Deutschlands. Landwirtschaftsverlag, MünsterGoogle Scholar
  48. Pergl J, Sádlo J, Petřík P, Danihelka J, Chrtek J Jr, Hejda M, Moravcová L, Perglová I, Štajerová K, Pyšek P (2016a) Dark side of the fence: ornamental plants as a source for spontaneous flora of the Czech Republic. Preslia 88:163–184Google Scholar
  49. Pergl J, Sádlo J, Petrusek A, Laštůvka Z, Musil J, Perglová I, Šanda R, Šefrová H, Šíma J, Vohralík V, Pyšek P (2016b) Black, grey and watch lists of alien species in the Czech Republic based on environmental impacts and management strategy. NeoBiota 28:1–37CrossRefGoogle Scholar
  50. Pflanzen Bruns (2013) Sortimentskatalog 2013–14. Joh. Bruns, Bad ZwischenahnGoogle Scholar
  51. Pheloung PC, Williams PA, Halloy SR (1999) A weed risk assessment model for use as a biosecurity tool evaluating plant introductions. J Environ Manage 57:239–251CrossRefGoogle Scholar
  52. Pyšek P, Sádlo J, Mandák B, Jarošík V (2003) Czech alien flora and the historical pattern of its formation: what came first to Central Europe? Oecologia 135:122–130CrossRefPubMedGoogle Scholar
  53. Pyšek P, Danihelka J, Sádlo J, Chrtek J Jr, Chytrý M, Jarošík V, Kaplan Z, Krahulec F, Moravcová L, Pergl J, Štajerová K, Tichý L (2012a) Catalogue of alien plants of the Czech Republic (2nd edn): checklist update, taxonomic diversity and invasion patterns. Preslia 84:155–255Google Scholar
  54. Pyšek P, Jarošík V, Hulme PE, Pergl J, Hejda M, Schaffner U, Vilà M (2012b) A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob Change Biol 18:1725–1737CrossRefGoogle Scholar
  55. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  56. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  57. Randall RP (2012) A global compendium of weeds, 2nd edn. Department of Agriculture and Food, KensingtonGoogle Scholar
  58. Razanajatovo M, Maurel N, Dawson W, Essl F, Kreft H, Pergl J, Kühn I, Pyšek P, Weigelt P, Winter M, van Kleunen M (2016) Plants capable of selfing are more likely to become naturalized. Nat Commun 7:13313CrossRefPubMedPubMedCentralGoogle Scholar
  59. Reichard SH (1996) What traits distinguish invasive plants from non-invasive plants? In: California Exotic Pest Council, Symposium ProceedingsGoogle Scholar
  60. Rejmánek M, Richardson DM (2013) Trees and shrubs as invasive alien species—2013 update of the global database. Divers Distrib 19:1093–1094CrossRefGoogle Scholar
  61. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60CrossRefPubMedGoogle Scholar
  62. Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol 1:103–113CrossRefGoogle Scholar
  63. Seebens H, Blackburn TM, Dyer EE et al (2017) No saturation in the accumulation of alien species worldwide. Nat Commun 8:14435CrossRefPubMedPubMedCentralGoogle Scholar
  64. Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32:369–373CrossRefGoogle Scholar
  65. Thuiller W, Georges D, Engler R, Breiner F (2016). biomod2: ensemble platform for species distribution modeling. R package version 3.3-7.
  66. Thum RA, Mercer AT, Wcisel DJ (2012) Loopholes in the regulation of invasive species: genetic identifications identify mislabeling of prohibited aquarium plants. Biol Invasions 14:929–937CrossRefGoogle Scholar
  67. Turbelin AJ, Malamud BD, Francis RA (2017) Mapping the global state of invasive alien species: patterns of invasion and policy responses. Glob Ecol Biogeogr 26:78–92CrossRefGoogle Scholar
  68. UN (2015) World urbanization prospects: the 2014 revision, United Nations, Department of Economic and Social Affairs, Population Division (ST/ESA/SER.A/366)Google Scholar
  69. van Kleunen M, Dawson W, Maurel N (2015a) Characteristics of successful alien plants. Mol Ecol 24:1954–1968CrossRefPubMedGoogle Scholar
  70. van Kleunen M, Dawson W, Essl F et al (2015b) Global exchange and accumulation of non-native plants. Nature 525:100–103CrossRefPubMedGoogle Scholar
  71. Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošik V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2010) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708CrossRefGoogle Scholar
  72. Wang Y, Bakker F, de Groot R, Wörtche H (2014) Effect of ecosystem services provided by urban green infrastructure on indoor environment: a literature review. Build Environ 77:88–100CrossRefGoogle Scholar
  73. Weber E (2003) Invasive plant species of the world: a reference guide to environmental weeds. CABI Publishing, WallingfordGoogle Scholar
  74. Williamson M, Pyšek P, Jarošík V, Prach K (2005) On the rates and patterns of spread of alien plants in the Czech Republic, Britain and Ireland. Ecoscience 12:424–433CrossRefGoogle Scholar
  75. Wittenberg R (ed) (2005) An inventory of alien species and their threat to biodiversity and economy in Switzerland. CABI Bioscience Switzerland Centre report to the Swiss Agency for Environment, Forests and Landscape. The environment in Practice No. 0629. Federal Office for the Environment, BernGoogle Scholar
  76. Woodford DJ, Richardson DM, MacIsaac HJ, Mandrak NE, van Wilgen BW, Wilson JRU, Weyl OLF (2016) Confronting the wicked problem of managing biological invasions. NeoBiota 31:63–86CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Katharina Mayer
    • 1
  • Emily Haeuser
    • 1
  • Wayne Dawson
    • 2
  • Franz Essl
    • 3
    • 4
  • Holger Kreft
    • 5
  • Jan Pergl
    • 6
  • Petr Pyšek
    • 6
    • 7
  • Patrick Weigelt
    • 4
  • Marten Winter
    • 8
  • Bernd Lenzner
    • 3
  • Mark van Kleunen
    • 9
    • 1
    Email author
  1. 1.Ecology, Department of BiologyUniversity of KonstanzKonstanzGermany
  2. 2.Department of BiosciencesDurham UniversityDurhamUK
  3. 3.Division of Conservation Biology, Vegetation and Landscape EcologyUniversity of ViennaViennaAustria
  4. 4.Centre for Invasion Biology, Department of Botany and ZoologyStellenbosch UniversityMatielandSouth Africa
  5. 5.Biodiversity, Macroecology & BiogeographyUniversity of GöttingenGöttingenGermany
  6. 6.Institute of Botany, Department of Invasion EcologyThe Czech Academy of SciencesPrůhoniceCzech Republic
  7. 7.Department of Ecology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
  8. 8.German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzigGermany
  9. 9.Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and ConservationTaizhou UniversityTaizhouChina

Personalised recommendations