Advertisement

Biological Invasions

, Volume 12, Issue 7, pp 2179–2206 | Cite as

Patterns of plant invasions in China: Taxonomic, biogeographic, climatic approaches and anthropogenic effects

  • Shan-Huah Wu
  • Hao-Ting Sun
  • Yung-Ching Teng
  • Marcel Rejmánek
  • Shu-Miaw Chaw
  • T.-Y. Aleck Yang
  • Chang-Fu Hsieh
Open Access
Original Paper

Abstract

This study was aimed to determine the patterns as well as the effects of biological, anthropogenic, and climatic factors on plant invasions in China. About 270 volumes of national and regional floras were employed to compile a naturalized flora of China. Habit, life form, origin, distribution, and uses of naturalized plants were also analyzed to determine patterns on invasion. Correlations between biological, anthropogenic and climatic parameters were estimated at province and regional scales. Naturalized species represent 1% of the flora of China. Asteraceae, Fabaceae, and Poaceae are the dominant families, but Euphorbiaceae and Cactaceae have the largest ratios of naturalized species to their global numbers. Oenothera, Euphorbia, and Crotalaria were the dominant genera. Around 50% of exotic species were introduced intentionally for medicinal purposes. Most of the naturalized species originated in tropical America, followed by Asia and Europe. Number of naturalized species was significantly correlated to the number of native species/log area. The intensity of plant invasion showed a pattern along climate zones from mesic to xeric, declining with decreasing temperature and precipitation across the nation. Anthropogenic factor, such as distance of transportation, was significantly correlated to plant invasions at a regional scale. Although anthropogenic factors were largely responsible for creating opportunities for exotic species to spread and establish, the local biodiversity and climate factors were the major factors shaping the pattern of plant invasions in China. The warm regions, which are the hot spots of local biodiversity, and relatively developed areas of China, furthermore, require immediate attentions.

Keywords

Anthropogenic factor Biodiversity Biogeographic pattern China Climate Plant invasion Taxonomic pattern 

Introduction

Plant invasions, accelerated and aggravated by international trade and tourism, especially in developing countries (Levin and D’Antonio 2003; Ruiz and Carlton 2003; Valladares-Padua 2006), have been considered to be one of the most important environmental issues of our time. Unfortunately, reports and studies on plant invasions are anecdotal or local in purview. China, the largest country in Asia and one of the most important industrial countries in the world, has been experiencing booming economic and domestic development in recent decades (Ding et al. 2008; Weber and Li 2008a, b). Although recent attention has been paid to the pattern of plant invasion in China, figures for less familiar invasive plants in China, compiled from the literature, number only 1–200 (Liu et al. 2006; Ding et al. 2008; Weber and Li 2008a, b). Compared to the area and diversity of habitats in China, these are not significant numbers. The knowledge of plant invasions and potential invaders is limited and far behind studies in neighboring areas such as Singapore (Corlett 1988), Japan (Enomoto 1999), Korea (Koh et al. 2000), and Taiwan (Wu et al. 2003; Wu et al. 2004a, b).

Datasets that present floristic status, biological attributes, geographical distribution, and usage information on exotic species have been shown to be very effective tools for discerning patterns of plant invasions and species invasiveness (Rejmánek and Richardson 1996; Daehler 2001; Pyšek et al. 2002; Lake and Leishman 2004; Pyšek et al. 2004; Wu et al. 2004a, b; Cadotte et al. 2006). For a region where the status and composition of invasive species are not definite, establishment of a database of naturalized species should be the first step toward approaching local plant invasions.

Albeit that not every naturalized species will become invasive, but all invasive species are naturalized first. Naturalized species can therefore be considered to be potential invaders for characterizing the pattern of plant invasions. A naturalized species is defined as an introduced (non-native, exotic) species, that can consistently reproduce and sustain populations over many generations without (or despite) direct intervention by humans (Richardson et al. 2000; Pyšek et al. 2002).

Habitat characteristics, such as local biodiversity, climate, and anthropogenic activities, as well as the uses of plants, may have a bearing on successful invasions and invasion patterns (Chytrý et al. 2008; Van der Wal et al. 2008). It has been shown that most of successful, established, invasive species were introduced intentionally as ornamentals, or for forage, medicine, and other purposes (Mack and Erneberg 2002; Mack 2003), while unintentional introductions usually occurred through contaminated fodder or crop seeds, footwear, packing materials, and ballast (Kloot 1987). Although contributions from the local economy and from anthropogenic activities have been studied, patterns of plant invasion along climatic gradients have not been documented. In consideration of the pools of species in different climate regions of the world and the length of the growing season, the intensity of plant invasions may vary in accordance with local biodiversity and climates. Comparisons of native and naturalized floras across different climate zones will contribute to generate better understandings of plant invasions.

International and domestic transportation, tourism, and cargo shipments across borders have been considered to be important vectors responsible for species introduction and exchange (Jenkins 1996; Williamson 1996; Shigesada and Kawasaki 1997; Dalmazzone 2000; McNeely 2000). Regardless of China’s importance in the world’s industrial capacity, the improved economy has accelerated domestic development of the public infrastructure, such as railroads, airports, harbors, and highways (Ding et al. 2008). Although there have been warnings of exponential growth in the invasions by alien species with the booming economy (Ding et al. 2008; Weber and Li 2008a, b), there is no evidence to back up such warnings. Since national statistical information is well assembled and released to the public, the effects of the local economy and anthropogenic activities on the naturalized flora and patterns of plant invasion can be readily assessed.

The main purpose of this study was to reveal patterns of plant invasions in China by identifying and analyzing the naturalized flora. This first list of naturalized species in China will serve as a foundation for future research on plant invasions. Based on this compilation, several basic questions can be addressed regarding naturalized alien species in China: (1) Is there a taxonomic pattern? (2) Are some life forms or habits overrepresented? (3) What is the nativity of the naturalized plants? (4) What are the modes of introduction? Furthermore, we also approximated the effects of local biodiversity, climate and anthropogenic activity on plant invasions. By understanding the patterns of plant naturalization in China, the only missing piece of the puzzle on plant invasions in eastern Asia, we hope to generate insightful perspectives and information for further regional studies.

Materials and methods

Catalogue of naturalized species

To compile a list of the naturalized flora, we reviewed 270 national, regional, and local floras as well as e-floras. Additionally, relevant articles in Chinese and English journals published before September 2008 were reviewed as well. Among these references, 172 books and numerous documents cited the naturalized status of the species compiled in Appendix. We employed the Flora of China as the major source of naturalized status. Hundred of volumes were therefore not listed as references. Each species designated as naturalized, escaped or persistent after cultivation, or invasive, was marked for further examination. Species introduced or cultivated without evidence of escaping were not considered. Additional information, such as life form, habit, use, and origin of these species, was carefully extracted from these references. The distribution of each species was presented by province, with the number of provinces used to indicate degree of invasiveness. Species mentioned in the literature as naturalized or escaped without documenting specimens or without further field evaluation were considered to be possibly naturalized and are listed separately.

Analysis

Information on the species nativity, life form (converted to Raunkiaer system (Mueller-Dombois and Ellenberg 1974), habit, year of first available record, mode or purposes of introduction, was used in the analyses. The list was organized by family and genera. The ratio of number of naturalized species per family and genus in China to the total number of species per family and genus worldwide (Mabberley 1997), excluding species of China, was used for comparison. For the purpose of introduction, all uses of a particular species were included. The total percentage therefore exceeded one hundred. Species without information on purpose of introduction were treated as purpose unknown. Because information on the native distribution of species provided in different references was not consistent, we grouped species by broad categories according to their biogeographical origins, such as Africa, America, Asia, Europe, and Eurasia (excl. southern Asia).

Parameters of local biodiversity, human activities and climatic factors in China were obtained to evaluate their effects on plant invasions. Number of native species per provinces was obtained from China biodiversity databases, and the numbers were divided by logarithmic area of respective provinces as the indicator of local biodiversity. Factors of human activities, including demography (population size), amount of freight movement (per 10 million tons/kilometer), freight quantity (billion tons), total length of transportation (kilometers), area used for transportation (km2), and international tourists (per million people) were obtained from the official website (http://www.stats.gov.cn) of the National Bureau of Statistics of China. Climatic factors, such as annual average temperature (°C), annual lowest temperature (°C), annual highest temperature (°C), and annual average precipitation (mm), were collected from the official website (http://www.cma.gov.cn) of the China Meteorological Administration. Temperature difference (°C) was calculated by subtracting the lowest temperature from the highest temperature. To reveal the relationships between trends in plant invasions and climate, a map of the climatic zones of China on the official website of Ministry of Culture, P. R. China (http://www1.chinaculture.org/index.html) was utilized. Multiple regression analyses (SPSS 15 2006) were applied to evaluate the relationships between plant invasions and parameters of anthropogenic effects and climatic factors in China. Collinearity analysis and adjusted R 2 were applied.

To characterize patterns of plant invasion across the nation, two categories were employed, province and region according to data availability. Data from 26 provinces were compiled to estimate plant invasions at the province scale, the basic administrative unit that usually has comprehensive background information for analyses. However, in consideration of data availability and regional development policy, background information for six regions was collected for further analyses as well. The six regions are: North (Beijing, Tianjin, Hebei, Shanxi, and Nei Mongol), Northeast (Liaoning, Jilin, and Heilongjiang), East (Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, and Shandong), South Central (southeast china; Henan, Hubei, Hunan, Guangdong, Guangxi, and Hainan), Southwest (Chongqing, Sichuan, Guizhou, Yunnan, and Xizang), and Northwest (Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang). These regions are named by their locations in China and are combinations of neighboring provinces that have relatively similar environmental and economic conditions. To standardize the incidences of plant invasion for comparison, an index of number of casual and naturalized species/log (area of a particular region in km2; Vitousek et al. 1997) was utilized.

Results

Documented naturalized species represent about 1% of the flora of China: 420 species in 273 genera and 84 families (Table 1; Appendix). Among these species, 84% are dicotyledons, 15% are monocotyledons, and two species are ferns. Chamaephytes represents 46.7% of the naturalized flora, followed by therophytes (28.5%), phanerophytes (16%), hemicryptophytes (6%), and cryptophytes (2.4%). Among the families and genera of the naturalized flora, 10% of the families are new to China, while 52% of the genera are new to China. Twenty-one additional species were categorized as status unknown (Appendix (Electronic supplementary information)).
Table 1

Numerical summary of the naturalized flora in China

 

Pteridophyta

Angiosperm

Total

Dicotyledons

Monocotyledons

Family

2

70(7)

12(1)

84(8)

Genus

2

223(117)

48(23)

273(140)

Species

2

355

65

420

Chamaephyte

168

31

199

Cryptophyte

6

4

10

Hemicryptophyte

10

14

24

Phanerophyte

65

1

66

Therophyte

 

104

15

117

Numbers in parentheses indicate families and genera new to China, respectively

Asteraceae, Poaceae, and Fabaceae have many more naturalized species than other families. Of the remaining families (for example, Euphorbiaceae, Amaranthaceae, Brassicaceae, and Convolvulaceae) all have fewer than 20 naturalized species per family (Fig. 1a). About 50% of the families contribute only one species to the naturalized flora, while 75% of the genera are represented by a single naturalized species. Euphorbiaceae (2.4%) and Cactaceae (2%) have the largest percent of naturalized species in China to the global number of species in the family, followed by Caryophyllaceae (0.57%), Convolvulaceae (0.54%), Agavaceae (0.5%), and Amaranthaceae (0.45%; Fig. 1). Of these families with higher ratios, the Amaranthaceae have the most naturalized species (43), followed by the Euphorbiaceae (18) and Convolvulaceae (16), while Agavaceae has the fewest (8).
Fig. 1

Taxonomic patterns of naturalized plants in China. a Top ten dominant families according to species number and ratio of number of naturalized species in China to global number of species per family. b Top ten dominant genera according to species number and ratio of number of naturalized species in China to global number of species per genera

Oenothera (Onagraceae) has the most naturalized species (10), followed by Amaranthus (Amaranthaceae) (9), Euphorbia (Euphorbiaceae) (8), Crotalaria (Fabaceae) (7), and Senna (Fabaceae) (5) (Fig. 1b). Melilotus has the largest percentage (20%) of naturalized species in China compared with the global number of species in this genus, followed by Cinchona (17%), Amaranthus (15%), and Oenothera (8%). In addition to Oenothera and Amaranthus, both of Melilotus and Cinchona have more than five naturalized species in China.

About 11.4% of the naturalized species are distributed nationwide (Table 2). The Asteraceae is the dominant family, with 11 naturalized species occurring in all provinces, followed by Fabaceae (6), Amaranthaceae (5), and Poaceae (4).
Table 2

List of 47 nationally distributed species

Apiaceae

Coriandrum sativum L.

Amaranthaceae

Alternanthera pungens Kunth

Alternanthera sessilis (L.) R. Br. ex DC.

Amaranthus albus L.

Celosia argentea L.

Gomphrena globosa L.

Asteraceae

Ageratum houstonianum Mill.

Amberboa moschata (L.) DC.

Ambrosia artemisiifolia L.

Conyza canadensis (L.) Cronq.

Coreopsis grandiflora Hogg. ex Sweet

Coreopsis tinctoria Nutt.

Eupatorium coelestinum L.

Iva xanthifolia Nutt.

Lagascea mollis Cass.

Praxelis clematidea R. M. King & H. Rob.

Sanvitalia procumbens Lam.

Tagetes patula L.

Capparaceae

Cleome burmannii Wight & Arn.

Caryophyllaceae

Saponaria officinalis L.

Convolvulaceae

Calonyction muricatum (L.) G.. Don

Ipomoea alba L.

Ipomoea purpurea (L.) Roth

Cyperaceae

Eleocharis valleculosa Ohwi f. setosa (Ohwi) Kitag.

Euphorbiaceae

Phyllanthus amarus Schumach. & Thonn.

Phyllanthus niruri L.

Ricinus communis L.

Fabaceae

Medicago lupulina L.

Medicago sativa L.

Melilotus albus Medik.

Trifolium pratense L.

Trifolium repens L.

Vicia sativa L.

Malvaceae

Hibiscus trionum L.

Onagraceae

Oenothera odorata Jacq.

Oxalidaceae

Oxalis corymbosa DC.

Poaceae

Coix lacryma-jobi L.

Phalaris canariensis L.

Setaria glauca (L.) P. Beauv.

Setaria viridis (L.) P. Beauv.

Polygonaceae

Polygonum aviculare L.

Pontederiaceae

Eichhornia crassipes (Mart.) Solms

Portulacaceae

Talinum paniculatum (Jacq.) Gaertn.

Solanaceae

Capsicum annuum L.

Datura stramonium L.

Nicandra physaloides (L.) Gaertn.

Solanum pseudocapsicum L. var. diflorum (Vell.) Bitter

Most of the naturalized species have had more than one path of introduction, while the route of introduction of only a small portion of the species is unknown About 51% of the naturalized species were introduced for medicinal purposes, followed by ornamentals (41%), crops (34%), cultivation (18%), and timbering (2%).

As for the origins of the naturalized species, the Americas have been the largest contributors (58%), followed by Europe (15%), Asia (12%), and Africa (9%). Species from Eurasia, Australia, and those with a general notion of origin represent only approximately 6% of the naturalized flora in China. Tropical areas of the Americas, Asia, and Africa were especially important sources (64%). Europe represents the single most important donor of temperate species naturalized in China.

Local biodiversity, anthropogenic and climatic factors are significantly correlated with the index of invasion province-wide and region-wide (Fig. 2; Table 3). The number of naturalized species was significantly exponentially correlated to local biodiversity (Fig. 2). Total length of transportation, which is positively significantly correlated to demography, is the only factor significantly correlated to the index of invasion region-wide. Annual highest temperature and temperature difference are significantly correlated to the index of invasion province-wide and region-wide.
Fig. 2

Regression and curve fitting analysis of naturalized species number to the number of native species per log area. Each point presented a province, and the shapes of data points are designated according to their respective regions

Table 3

Multiple regression analysis of invasion index to anthropogenic and climate factors in regional and provincial scales

Predictor variable

Regional

Provincial

Beta

P

Beta

P

Anthropogenic factorsa

 Transportation distance

1.171*

0.023

 Log area

−0.059

0.736

 Tourist

−0.279

0.337

Climate factorsb,c

 Average temperature

−0.918

0.102

−0.386

0.256

 Highest temperature

0.453*

0.052

0.200

0.176

 Precipitation

0.855

0.103

0.246

0.385

 Temperature difference

−0.838*

0.040

−0.902*

0.000

Beta represents the adjusted correlation coefficients. (* P < 0.05)

aAnthropogenic factors in regional scale: F(3,2) = 27.439, P = 0.035, Adjusted R2 = 0.94)

bClimate factors in regional scale: (F(4,1) = 281.202, P = 0.045, Adjusted R2 = 0.996)

cClimate factors in provincial scale: (F(4,25) = 12.59, P = 0.000, Adjusted R2 = 0.651)

Discussion

In consideration of the size of the area and the native flora, our intensive efforts only represented a relatively small fraction of the plant invasions in China (Table 1, Appendix; 420 naturalized species) compared to other areas of the world (Mehrhoff 2000, Enomoto 1999, Wu et al. submitted). The naturalized flora may be as much as five times larger than that compiled in this study according to tens-rules (Williamson and Fitter 1996) and previous estimations of invasive species in China (Liu et al. 2006; Ding et al. 2008; Weber and Li 2008a, b). However, the resolution is not able to be improved due to the quality of taxonomical reports/documents. Although the Flora of China has been comprehensively compiled and the e-flora of China has been under-construction, naturalization status of introduce and cultivated were hardly stated. The naturalized flora may be seriously underestimated due to unclear statements of naturalization status of cultivated/introduced species. However, the general patterns of plant invasions in China could still be accessed by our study since the attentions of plant invasions seem to be even across taxonomic groups and geographical regions.
Table 4

List of naturalized species in China

Species

Origin

RS

LF

HA

U

W

Prov.

RE

Pteridophyta

Azollaceae

Azolla filiculoides Lam.

America

 

H

A

O

+

2

1

Cyatheaceae

Sphaeropteris lepifera (J. Sm. ex Hook.) Tryon

Philippines

 

H

P

Cr/Cu/M/O

 

1

2

Angiosperms

Dicotyledons

Acanthaceae

Adhatoda vasica Nees

Southeast Asia, India and Myanmar

Ph

S

P

O

 

15

 

Andrographis paniculata (Burm. f.) Nees

India and Indochina Peninsula

Th

H

A

Cu

+

1

3

Ruellia brittoniana Leonard

Mexico

Ch

H

P

O

+

14

4

Amaranthaceae

Alternanthera paronychioides A. St.-Hil.

Tropical America

Ch

H

P

O

+

1

5

Alternanthera philoxeroides (Mart.) Griseb.

Brazil

Ch

H

P

Cr/M

+

25

 

Alternanthera pungens Kunth

South America

Th

H

A

 

+

33

 

Alternanthera sessilis (L.) R. Br. ex DC.

America

Ch

H

A/P

 

+

33

5

Amaranthus albus L.

North America

Th

H

A

M

+

33

 

Amaranthus blitoides S. Watson

North America

Th

H

A

 

+

4

6

Amaranthus caudatus L.

America

Th

H

A

M

+

1

7

Amaranthus hypochondriacus L.

North America

Th

H

A

Cr/O

+

3

 

Amaranthus lividus L.

Tropical Africa and Asia

Th

H

A

Cr/M

+

29

8

Amaranthus retroflexus L.

Tropical America

Th

H

A

Cr/M

+

2

9

Amaranthus spinosus L.

Tropical America

Th

H

A

M/O

+

5

10

Amaranthus tricolor L.

India

Th

H

A

Cr/M/O

+

3

11

Amaranthus viridis L.

Tropical Africa

Th

H

A

Cr/M

+

12

12

Celosia argentea L.

India

Th

H

A

Cr/Cu/M

+

33

13

Celosia cristata L.

Tropical Asia

Th

H

A

M/O

+

1

14

Gomphrena celosioides Mart.

Tropical America

He

H

P

M/O

+

4

 

Gomphrena globosa L.

Tropical America

Th

H

A

M/O

+

33

 

Iresine herbstii Hook. f. ex Lindl.

Brazil

Ch

H

P

O

+

6

15

Annonaceae

Annona glabra L.

Tropical America

Ph

T

P

Cr/Cu

+

1

3

Annona squamosa L.

Tropical America

Ph

S/T

P

Cr/M

+

6

16

Apiaceae

Coriandrum sativum L.

Mediterranean

Ch

H

A/B

Cr/Cu/M

+

33

2

Cyclospermum leptophyllum (Pers.) Sprague ex Britton & P. Wilson

South America

Ch

H

P

 

+

2

 

Daucus carota L. var. sativa Hoffm.

Europe, North Africa and Asia

Cr

H

B

Cr/M

+

9

 

Eryngium foetidum L.

Tropical America

Ch

H

P

Cr/M

+

5

 

Foeniculum vulgare Mill.

Mediterranean

Ch

H

A/B

Cr/M

+

2

42

Apocynaceae

Asclepias curassavica L.

West Indies

Ch

H

P

M

+

3

17

Catharanthus roseus (L.) G. Don

Madagascar

Ph

H

P

M/O

+

9

 

Catharanthus roseus (L.) G. Don ‘Albus’ Lawrence

Africa

Ph

S/H

P

M/O

+

2

 

Plumeria rubra L. ‘Acutifolia’ Bailey

Mexico

Ph

T

P

M/O

+

2

18

Rauvolfia tetraphylla L.

Tropica America and Tropical Africa

Ph

S

P

Cu/M

+

6

 

Thevetia peruviana (Pers.) K. Schum.

Tropical America

Ph

S/T

P

Cu/M/O

+

7

 

Asteraceae

        

Acanthospermum australe (L.) Kuntze

South America

Th

H

A

 

+

3

 

Achillea millefolium L.

Europe

He

H

P

Cu/M

+

1

19

Ageratina adenophora (Spreng.) King & H. Rob.

Mexico

Ch

H

P

 

+

3

20

Ageratum conyzoides L.

Central and South America

Th

H

A

M

+

9

 

Ageratum houstonianum Mill.

Mexico

Th

H

A

M/O

+

33

 

Amberboa moschata (L.) DC.

Turkey and Armenia

Ch

H

A/B

O

+

33

21

Ambrosia artemisiifolia L.

North America

Th

H

A

 

+

33

22

Ambrosia trifida L.

North America

Th

H

A

 

+

8

 

Anthemis arvensis L.

Europe

Th

H

A

 

+

8

 

Anthemis cotula L.

Europe

Th

H

A

 

+

2

23

Aster subulatus Michx.

North America

Th

H

A

M

+

15

 

Bidens alba (L.) DC.

Tropical America

Th

H

A

Cr/M

+

3

 

Bidens bipinnata L.

East Asia

Th

H

A

M

+

29

 

Bidens frondosa L.

North America

Th

H

A

M

+

8

13

Bidens pilosa L. var. radiata Sch. Bip.

North America

Th

H

A

M

+

1

17

Buphthalmum salicifolium L.

Europe

Ch

H

P

O

+

5

 

Carthamus tinctorius L.

Central Asia

Th

H

A

Cu/M

+

8

 

Centaurea diffusa Lam.

Southeast Europe

Ch

H

B

 

+

1

 

Chromolaena odorata (L.) King & H. Rob.

America

Ch

H

P

M

+

8

8

Cichorium intybus L.

Northern Europe

Ch

H

P

Cr/M

+

15

 

Conyza bonariensis (L.) Cronq.

South America

Ch

H

A/B

M

+

1

24

Conyza canadensis (L.) Cronq.

North America

Th

H

A

Cr/M

+

33

 

Conyza sumatrensis (Retz.) Walker

South America

Ch

H

A/B

 

+

9

 

Coreopsis grandiflora Hogg ex Sweet

North America

Ch

H

P

O

+

33

25

Coreopsis lanceolata L.

North America

Ch

H

P

O

+

1

26

Coreopsis tinctoria Nutt.

North America

Ch

H

P

O

+

33

27

Cosmos bipinnata Cav.

Mexico

Ch

H

A/P

O

 

3

17

Cosmos sulphureus Cav.

Mexico to Brazil

Th

H

A

Cu/O

+

1

2

Crassocephalum crepidioides (Benth.) S. Moore

Tropical Africa

Ch

H

P

M

+

12

 

Dahlia pinnata Cav.

Mexico

Cr

H

P

O

+

3

28

Elephantopus scaber L.

Tropical America

He

H

P

M

+

8

13

Erechtites hieracifolia (L.) Raf. ex DC.

Mexico

Ch

H

P

  

15

 

Erechtites valerianaefolia (Wolf) DC.

Brazil

Th

H

A

  

5

 

Erigeron annuus (L.) Pers.

North America

Ch

H

A/B

M

+

13

 

Erigeron karvinskianus DC.

Mexico and Panama

Ch

H

P

O

+

3

29

Eupatorium coelestinum L.

America

Ch

H

P

 

+

33

 

Gaillardia aristata Pursh

North America

Cr

H

P

O

+

1

30

Gaillardia pulchella Foug.

North America

Th

H

A

O

+

1

30

Galinsoga parviflora Cav.

Tropical America

Th

H

A

 

+

5

 

Galinsoga quadriradiata Ruiz & Pav.

Tropical America

Th

H

A

 

+

2

31

Gnaphalium pensylvanicum Willd.

Warm America

Th

H

A

 

+

9

 

Helenium autumnale L.

North America

Ch

H

P

M

+

1

31

Helianthus tuberosus L.

North America

Cr

H

P

M/O

+

1

 

Iva xanthifolia Nutt.

North America

Th

H

A

 

+

33

 

Kleinia radicans (L. f.) Haw. ex DC.

South Africa

Ch

H/S

P

  

1

30

Lactuca sativa L.

Europe

Ch

H

A/B

Cr/M

+

2

 

Lagascea mollis Cass.

Cuba

Ch

H

P

O

+

33

8

Mikania cordata (Burm. f.) B. L. Rob.

Central and South America

Ch

H

P

M

+

2

32

Mikania micrantha Kunth

South America

Ch

V

P

 

+

8

33

Parthenium hysterophorus L.

Tropical America

Th

H

A

Cu/M

+

5

 

Polymnia uvedalia L.

America

Ch

H

P

M

+

7

 

Praxelis clematidea R. M. King & H. Rob.

South America

Ch

H

P

 

+

33

 

Pseudelephantopus spicatus (Juss. ex Aubl.) C. F. Baker

Tropical America and Tropical Africa

Ch

H

P

 

+

16

 

Pyrethrum parthenifolium Willd.

Middle Asia

Ch

H

P

O

+

1

 

Sanvitalia procumbens Lam.

Mexico

Th

H

A

M/O

+

33

 

Saussurea costus (Falc.) Lipsch.

Kashmir

Ch

H

P

M

 

14

8

Sclerocarpus africanus Jacq.

Africa

Th

H

A

 

+

1

34

Senecio vulgaris L.

Europe

Ch

H

A/B

M

+

9

24

Solidago canadensis L.

North America

Ch

H

P

O

+

7

 

Soliva anthemifolia (Juss.) R. Br. ex Less.

South America

Th

H

A

 

+

5

4

Sonchus oleraceus L.

Europe and Middle Asia

Ch

H

A/B

M

+

23

 

Synedrella nodiflora (L.) Gaertn.

Tropical America

Th

H

A

M

+

14

4

Tagetes erecta L.

Mexico

Th

H

A

Cr/Cu/M/O

+

10

 

Tagetes patula L.

Mexico

Th

H

A

M/O

+

33

35

Tithonia diversifolia A. Gray

Mexico

Ph

H

A/P

Cr/O

+

4

36

Tridax procumbens L.

Tropical America

He

H

P

Cr

+

3

36

Zinnia elegans Jacq.

Mexico

Th

H

A

O

+

1

37

Zinnia peruviana (L.) L.

Mexico

Th

H

A

O

+

6

 

Balsaminaceae

Impatiens walleriana Hook. f.

East Africa

Ch

H

P

O

+

7

 

Basellaceae

Anredera cordifolia (Ten.) Steenis

Tropical South America

Ch

V/H

P

M/O

+

5

 

Basella alba L.

Tropical Asia

Ch

V

P

M

+

3

 

Begoniaceae

Begonia semperflorens Link & Otto

Brazil

Ch

H

P

M/O

+

20

 

Berberidaceae

Berberis thunbergii DC.

Japan

Ph

S

P

M

+

6

 

Bignoniaceae

Macfadyena unguis-cati (L.) A. H. Gentry

West Indies, Mexico, Brzil and Argentina

Ch

V

P

O

+

2

6

Bixaceae

Bixa orellana L.

Tropical America

Ph

S/T

P

Cu/M/O

+

2

 

Bombacaceae

Ochroma lagopus Swartz

Tropical America

Ph

T

P

W

+

1

38

Boraginaceae

Heliotropium europaeum L.

Europe

Th

H

A

M

+

2

39

Alyssum alyssoides (L.) L.

Europe

Th

H

A

 

+

1

40

Brassicaceae

Brassica juncea (L.) Czern.

Europe

Ch

H

A

Cr

+

N/A

41

Brassica nigra (L.) W.D.J. Koch

Europe

Ch

H

A

Cr

+

5

41

Brassica oleracea L. var. botrytis L.

Europe

Ch

H

B

Cr

+

1

2

Brassica oleracea L. var. capitata L.

Europe

Ch

H

B

Cr

+

3

 

Coronopus integrifolius (DC.) Spreng.

Africa

Ch

H

A/P

 

+

1

 

Coronopus didymus (L.) Smith

South America

Ch

H

B/P

 

+

11

 

Diplotaxis muralis (L.) DC.

Europe

He

H

A/B/P

Cr

+

2

33

Isatis tinctoria L.

Europe

Ch

H

B

M

+

16

43

Lepidium campestre (L.) R. Br.

Europe, Asia Minor

Ch

H

A/B

M

+

8

44

Lepidium densiflorum Schrad.

North America

Ch

H

A/B

 

+

6

 

Lepidium virginicum L.

North America

Ch

H

A/B

M

+

23

31

Lobularia maritima (L.) Desv.

Mediterranean

Ch

H

P

 

+

8

41

Nasturtium officinale R. Br.

Eurasia

Ch

H

P

Cr/M

+

14

45

Raphanus sativus L.

Mediterranean

Ch

H

A/B

Cr

+

N/A

41

Sisymbrium officinale (L.) Scop.

Eurasia

Ch

H

A

 

+

5

41

Cactaceae

Epiphyllum oxypetalum (DC.) Haw.

Mexico and Central America

Ph

S

P

O

+

5

 

Hylocereus trigonus (Haw.) Saff.

Caribbean

Ch

V

P

O

 

3

 

Hylocereus undatus (Haw.) Britt. & Rose

Mexico, Central and South America

Ph

H/S

P

Cu/O

+

12

 

Opuntia cochinellifera (L.) Mill.

Mexico

Ph

S/T

P

Cr/Cu/O

 

4

46

Opuntia dillenii (Ker. Gawl.) Haw.

Caribbean

Ph

S

P

Cu/M/O

+

4

3

Opuntia ficus-indica (L.) Mill.

Mexico

Ph

S/T

P

Cr/Cu

+

16

 

Opuntia monacantha (Willd.) Haw.

South America

Ph

S/T

P

Cr/Cu/M

+

4

47

Pereskia aculeata Mill.

Central and South America, West Indies

Ch

S

P

Cr/Cu

+

4

 

Campanulaceae

Hippobroma longiflora (L.) G. Don

America

Ch

H

P

M

+

5

 

Triodanis biflora (Ruiz & Pav.) Greene

Tropical America

Th

H

A

 

+

8

 

Cannabaceae

Cannabis sativa L.

Bhutan, Sikkim, India and Middle Asia

Th

H

A

M

+

12

 

Capparaceae

Cleome burmannii Wight & Arn.

India

Th

H

A

  

33

 

Cleome speciosa Raf.

South America

Th

H

A

O

+

2

 

Caprifoliaceae

Lonicera sempervirens L.

North America

Ch

V

P

O

+

4

 

Caryophyllaceae

Arenaria serpyllifolia L.

Europe

Ch

H

A/B

M

+

8

27

Cerastium tomentosum L.

Italy

Ch

H

P

O

+

1

42

Dianthus sylvestris Wulfen

Europe

Ch

H

P

W

+

1

 

Saponaria officinalis L.

Europe

Ch

H

P

O

+

33

48

Silene armeria L.

South Europe

Ch

H

A/B

O

+

14

 

Silene pratensis (Raf.) Gren. & Godr.

Europe, Siberia and Middle Asia

Ch

H

A/B

 

+

6

 

Vaccaria segetalis (Neck.) Garcke

Europe

Ch

H

A/B

M

+

28

49

Casuarinaceae

Casuarina equisetifolia L.

Australia and Pacific islands

Ph

T

P

Cr/Cu/M/W

+

5

28

Chenopodiaceae

Atriplex hortensis L.

Europe and Southwest Asia

Th

H

A

Cr

+

23

 

Chenopodium ambrosioides L.

Mexico

Ch

H

A/P

M

+

10

 

Convolvulaceae

Calonyction muricatum (L.) G. Don

Tropical America and Netherlands

Th

V

A

M/O

+

33

 

Ipomoea alba L.

Tropical America

Ch

V

A/P

O

+

33

 

Ipomoea cairica (L.) Sweet

Tropical Asia and Africa

Ch

V

P

M/O

+

4

 

Ipomoea indica (Burm. f.) Merr.

South America

Ch

V

A/P

O

+

3

 

Ipomoea triloba L.

Tropical America

Th

V

A

Cu/O

+

3

13

Jacquemontia tamnifolia (L.) Griseb.

Tropical America

Th

V

A

 

+

1

32

Ipomoea indica (Burm. f.) Merr

South America

Th

V

A

o

+

4

50

Ipomoea nil (L.) Roth

Tropical America

Th

V

A

M/O

+

4

51

Ipomoea purpurea (L.) Roth

Tropical America

Th

V

A

O

+

33

 

Quamoclit pennata (Desr.) Bojer

Tropical America

Th

V

A

O

 

1

 

Crassulaceae

Aeonium spathulatum (Hornem.) Praeg.

Canary Islands

Ch

S

P

O

 

6

 

Bryophyllum pinnatum (Lam.) Oken

Africa and Madagascar

Ch

H

P

M/O

+

5

 

Cucurbitaceae

Sechium edule (Jacq.) Swartz

South America

Ch

V

P

Cr

+

7

2

Dioscoreaceae

Dioscorea arachidna Prain & Burkill

India

Cr

V

P

  

3

 

Equisetaceae

Equisetum variegatum Schleich. ex F. Weber & D. Mohr ssp. alaskanum (A.A. Eaton) Hultén

North America

Ch

H

P

 

+

7

 

Euphorbia neriifolia L.

India

Ph

S/T

P

O

+

6

 

Euphorbiaceae

Chamaesyce prostrata (Aiton) Small

Tropical and Subtropical America

Th

H

A

O

+

7

52

Codiaeum variegatum (L.) A Juss.

Indonesia, Malaysia and Oceania

Ph

S/T

P

M/O

+

2

2

Euphorbia peplus L.

Mediterranean

Th

H

A

  

5

 

Euphorbia helioscopia L.

Europe

Ch

H

A/B

Cu/M

+

26

 

Euphorbia heterophylla L.

Mexico

Th

H

A

 

+

16

24

Euphorbia hirta L.

Central America

Th

H

A

M

+

10

53

Euphorbia lathyris L.

Europe

Th

H

A

Cu/M

+

24

 

Euphorbia milii Des Moul.

Madagascar

Ch

S/L

P

M/O

+

27

18

Euphorbia tirucalli L.

Angola

Ph

S/T

P

O

+

12

35

Jatropha curcas L.

Tropical America

Ph

S/T

P

Cu

+

6

 

Jatropha gossypiifolia L.

Tropical America

Ph

S

P

M

+

2

 

Manihot esculenta Crantz

Brazil

Ph

S

A/P

Cu

+

12

 

Phyllanthus amarus Schumach. & Thonn.

America

Ch

H

A/B

M

+

33

 

Phyllanthus niruri L.

Tropical America

Th

H

A

M

+

33

42

Ricinus communis L.

Northeast Africa

Th

H/S/T

A

Cr/Cu/M/O/W

+

33

34

Fabaceae

Acacia catechu (L. f.) Willd.

India, Myanmar, Thailand and Africa

Ph

S/T

P

M

+

6

 

Acacia dealbata Link

Australia

Ph

T

P

Cu

+

13

 

Acacia farnesiana (L.) Willd.

Tropical America

Ph

S/T

P

Cu/O/W

+

5

2

Amorpha fruticosa L.

North America

Ph

S

P

Cu/M

+

17

 

Arachis hypogaea L.

Brazil

Th

H

A

Cr/Cu/M

+

6

 

Caesalpinia pulcherrima (L.) Sw.

West Indies and Tropical America

Ph

S/T

P

M/O

+

3

54

Cassia floribunda Cav.

Tropical America

Ph

S

P

O

+

4

54

Cassia mimosoides L.

Tropical America

Ch

H

A/P

Cr/Cu/M

+

5

 

Cassia siamea (Lam.) Irwin & Barneby

India, Sri Lanka and Malaysia.

Ph

T

P

O/W

+

1

55

Centrosema pubescens Benth.

South America

Ch

V

P

Cu

+

2

24

Clitoria ternatea L.

India

Ch

V/H

P

M/O

+

5

 

Crotalaria incana L.

Tropical America

Ch

S

P

 

+

6

 

Crotalaria juncea L.

India

Th

H

A

Cr/Cu/M

+

7

 

Crotalaria lanceolata E. Mey.

Africa

Ch

H/S

P

 

+

2

 

Crotalaria micans Link

America

Ch

H/S

P

M

+

4

 

Crotalaria ochroleuca G. Don

Africa

Ch

H/S

P

 

+

3

 

Crotalaria pallida Aiton

Southern Africa

Ch

S

P

Cu/M

+

8

 

Crotalaria trichotoma Bojer

Africa

Ch

H/S

P

M/O

+

7

 

Desmanthus virgatus (L.) Willd.

Tropical America

Ch

S

P

Cr

+

1

2

Desmodium scorpiurus (Sw.) Desv.

South America

Ch

H

P

 

+

1

 

Desmodium tortuosum (Sw.) DC.

South America and West Indies

Ch

H

A/P

 

+

2

 

Indigofera suffruticosa Mill.

Tropical America

Ph

S

P

Cu

+

8

 

Leucaena leucocephala (Lam.) de Wit

Tropical America

Ph

S/T

P

 

+

5

 

Macrotyloma uniflorum (Lam.) Verdc.

India

Ch

V/H

A/P

Cr/Cu

+

1

4

Medicago lupulina L.

Europe

Th

H

A

Cr

+

33

8

Medicago polymorpha L.

Europe

Th

H

A

Cr

+

18

28

Medicago sativa L.

Europe and West Asia

Ch

H

P

Cr/M

+

33

 

Melilotus albus Medik.

Europe

Ch

H

A/B

Cr/Cu

+

33

56

Melilotus indica (L.) All.

India

Th

H

A

Cr/Cu

+

13

 

Melilotus indicus (L.) All.

Europe

Ch

H

B

M

+

1

8

Melilotus officinalis (L.) Lam.

Europe

Ch

H

A/B

Cu/M

+

25

6

Mimosa bimucronata (DC.) Kuntze

South America

Ph

S/T

P

 

+

3

2

Mimosa diplotricha C. Wright

Brazil

Ph

H/S

P

Cr/Cu

+

5

 

Mimosa pigra L.

Tropical South America

Ph

S

P

O

+

1

2

Mimosa pudica L.

Tropical America

Ch

H/S

P

M/O

+

6

 

Neptunia plena (L.) Benth.

America

Ch

H

P

O

+

1

 

Pithecellobium dulce (Roxb.) Benth.

Mexico

Ph

T

P

Cr/Cu

+

2

24

Senna alata (L.) Roxb.

Tropical America

Ch

S

P

O

+

3

 

Senna hirsuta (L.) H. S. Irwin & Barneby

Tropical America

Ch

H/S

P

M

+

4

 

Senna occidentalis (L.) Link

South America

Ph

H

P

M

+

10

 

Senna sophera (L.) Roxb.

Tropical Asia

Ph

S

P

Cr/M

+

12

 

Senna tora (L.) Roxb.

Tropical Asia and America

Th

H

A

Cr/M

+

16

 

Sesbania cannabina (Retz.) Pers.

India, Java, Malaysia, Philippines and Tropical Eastern Hemisphere

Th

H

A

Cr/Cu

+

8

 

Sesbania grandifloua (L.) Pers.

West Indies and Southeast America

Ph

S/T

P

Cr/Cu/M

+

3

24

Tamarindus indica L.

Tropical Africa

Ph

T

P

Cr/Cu/M/O

+

5

 

Tephrosia candida (Roxb.) DC.

East India and Malaysia

Ph

H/S

P

Cu

+

5

 

Tephrosia noctiflora Bojer ex Baker

Africa and India

Ph

H/S

A/P

 

+

2

 

Tephrosia vogelii Hook. f.

Tropical Africa

Ch

H/S

P

Cu

+

1

 

Trifolium fragiferum L.

Europe and Middle Asia

Ch

H

P

Cr

+

1

 

Trifolium hybridum L.

Europe

Ch

H

P

Cr

+

3

 

Trifolium pratense L.

Europe

Ch

H

P

Cr/M

+

33

 

Trifolium repens L.

Europe and North Africa

Ch

H

P

Cr/Cu/M

+

33

 

Trigonella foenum-graecum L.

Eurasia

Th

H

A

Cr/Cu/M

+

10

 

Ulex europaeus L.

Europe

Ch

S

P

Cr/O

+

1

 

Vicia hirsuta (L.) S. F. Gray

North Hemisphere

Th

V

A

Cr/Cu/M

+

18

8

Vicia sativa L.

South Europe and West Asia

Ch

H

A/B

Cr/Cu

+

33

 

Vicia sativa L. ssp. nigra (L.) Ehrh.

Europe

Th

H

A

Cr/Cu/M

+

?

8

Vicia tetrasperma (L.) Schreb.

Europe

Ch

H

A/P

Cr/M

+

18

8

Vicia villosa Roth

Europe, Middle Asia and Iran

Th

H

A

Cr/Cu/M

+

22

 

Vigna umbellata (Thunb.) Ohwi & H. Ohashi

Subtropical Asia

Th

V

A

M

+

7

 

Geraniaceae

Erodium cicutarium (L.) L’Hér.

Europe and Africa

Ch

H

A/B

M

+

16

8

Geranium carolinianum L.

North America

Ch

H

P

M

+

17

 

Juglandaceae

Juglans regia L.

Eastern Europe

Ph

T

P

Cr/Cu/M

+

28

57

Lamiaceae

Hyptis brevipes Poit.

Mexico

Th

H

A

 

+

2

 

Hyptis rhomboidea Mart. & Gal.

Tropical America

Ch

H

P

 

+

3

 

Hyptis rhomboides Mart & Gal.

Madagascar

Ch

H

P

 

+

?

8

Hyptis suaveolens (L.) Poit.

Tropical America

Th

H

A

M

+

4

 

Mentha spicata L.

South Europe, Canary Islands

Ch

H

P

Cu/M

+

9

 

Ocimum basilicum L.

Tropical Asia

Th

H

A

Cr/Cu/M

+

12

 

Salvia coccinea P.J. Buchoz ex Etlinger

America

Ch

H

A/B/P

M/O

+

9

 

Linaceae

Linum usitatissimum L.

Europe

Th

H

A

Cu/M

+

?

 

Lobeliaceae

Hippobroma longiflora (L.) G. Don

Tropical America

Ch

H

P

 

+

6

15

Lythraceae

Cupheacarthagenensis (Jacq.) J. F. Macbr.

Tropical America

Th

H

A

Cr/Cu/M/O

+

1

24

Malvaceae

Abelmoschus moschatus (L.) Medik.

Indies, Malaysia to the Pacific islands

Ch

H

A/P

Cr/Cu/M/O

+

15

12

Gossypium barbadense L. var. acuminatum (Roxb. ex G. Don) Triana & Planch.

South America and West Indies

Ch

H/S

P

Cu

+

1

47

Herissantia crispa (L.) Brizicky

Tropical America

Ch

H

P

 

+

2

 

Hibiscus trionum L.

Middle Africa

Th

H

A

M

+

33

 

Malvastrum americanum (L.) Torr.

America

Ch

H/S

P

 

+

2

 

Malvastrum coromandelianum (L.) Garcke

America

Ch

S

P

M

+

6

 

Martyniaceae

Martynia annua L.

Mexico and Central America

Ch

H

A/P

 

+

1

 

Moringaceae

Moringa oleifera Lam.

India

Ph

T

P

Cr/Cu/O

+

2

 

Myrtaceae

Psidium guajava L.

South America

Ph

T

P

Cr/M

+

8

 

Syzygium jambos (L.) Alston

Southeast Asia

Ph

T

P

Cr

+

7

58

Nyctaginaceae

Bougainvillea glabra Choisy

Brazil

Ch

S/L

P

M/O

+

2

24

Mirabilis jalapa L.

Tropical America

Th

H

A

M/O

+

6

 

Oleaceae

Ligustrum obtusifolium Siebold & Zucc. ssp. microphyllum (Nakai) P. S. Green

Japan and Korea

Ph

S

P

O

+

2

 

Jasminum sambac (L.) Aiton

India

Ch

S/L

P

Cu/M/O

+

8

42

Onagraceae

Clarkia pulchella Pursh

North America

Th

H

A

O

+

1

 

Gaura biennis L.

North America

Ch

H

A/B

 

+

1

 

Gaura lindheimeri Engelm. & A. Gray

North America

Ch

H

P

 

+

6

 

Gaura parviflora Douglas ex Lehm.

North America

Ch

H

A/B

 

+

7

 

Oenothera biennis L.

North America

Ch

H

B

M

+

19

 

Oenothera drummondii Hook.

East North America

Ch

H

A/B/P

O

+

2

 

Oenothera glazioviana Micheli

Europe

Ch

H

B/P

O

+

19

 

Oenothera oakesiana (A. Gray) J. W. Robbins ex S. Watson & J. M. Coult.

North America

Ch

H

B

 

+

1

 

Oenothera odorata Jacq.

South America

Ch

H

A/B

 

+

33

 

Oenothera parviflora L.

North America

Ch

H

B

 

+

1

 

Oenothera rosea L’Her. ex Aiton

Tropical America

Ch

H

P

Cu/M

+

5

 

Oenothera tetraptera Cav.

Mexico and Central America

Ch

H

A/P

Cu

+

2

 

Oenothera villosa Thunb.

North America

Ch

H

B

Cr/M

+

4

 

Oenothera laciniata Hill

North America

Ch

H

A/P

O

+

1

63

Oxalidaceae

Oxalis corymbosa DC.

Tropical South America

Ch

H

P

M/O

+

33

 

Oxalis pes-caprae L.

South Africa

Ch

H

P

O

+

1

59

Papaveraceae

Argemone mexicana L.

West Indies

Th

H

A

M

+

7

 

Eschscholtzia californica Cham.

California

Ch

H/S

A/P

O

 

2

31

Passifloraceae

Passiflora coerulea L.

Brazil

Ch

V

P

M/O

+

7

 

Passiflora edulis Sims

Brazil and Netherlands Antilles

Ch

V

P

Cr/Cu/M

+

3

 

Passiflora foetida L.

West Indies, South America and Netherlands Antilles

Ch

V

P

Cr/M

+

5

60

Passiflora gracilis Jacq. ex Link

South America

Th

V

A

 

+

1

 

Phytolaccaceae

Phytolacca americana L.

North America

Ch

H

P

M

+

12

 

Rivina humilis L.

Tropical America

Ch

S

P

O

+

3

 

Piperaceae

Peperomia pellucida (L.) Kunth

Tropical America

Th

H

A

 

+

10

9

Plantaginaceae

Plantago arenaria Waldst. & Kit.

Europe, North Africa and West Asia

He

H

A/B

 

+

8

 

Plantago aristata Michx.

North America

He

H

A/B

 

+

2

 

Plantago lanceolata L.

Britain

He

H

P

M

+

4

8

Plantago virginica L.

North America

He

H

A/B

 

+

6

 

Polygalaceae

Polygala paniculata L.

Brazil and Mexico

Ch

H/S

A/P

 

+

1

12

Polygonum aviculare L.

Europe and North Asia

Th

H

A

Cr/M

+

33

8

Rumex acetosella L.

Eurasia

Ch

H

P

 

+

12

8

Rumex crispus L.

Eurasia

Ch

H

P

 

+

20

8

Portulacaceae

Portulaca pilosa L. ssp. grandiflora (Hook.) R. Geesink

Tropical America

Ch

H

A/P

M

+

5

12

Talinum paniculatum (Jacq.) Gaertn.

Tropical America

Cr

H

A/P

M

+

33

 

Punicaceae

Punica granatum L.

Balkan Peninsula and Iran

Ph

S/T

P

Cr/M

+

10

 

Ranunculaceae

Ranunculus arvensis L.

West Asia and Europe

Th

H

A

M

+

1

 

Resedaceae

Reseda lutea L.

Southwest Asia and Mediterranean

Ch

H

A/P

 

+

1

 

Rubiaceae

Carapichea ipecacuanha (Brot.) L. Andersson

Southern America

Ch

H

P

M

 

1

61

Cinchona calisaya Wedd.

Bolivia and Peru

Ph

T

P

Cr/M

 

1

61

Cinchona ledgeriana (Howard) Moens ex Trim.

Bolivia and Peru

Ph

T

P

M

 

1

61

Cinchona officinalis L.

South America

Ph

S/T

P

M

+

1

61

Cinchona succirubra Pav. ex Klotzsch

Ecuador and Peru

Ph

T

P

M

+

1

61

Morinda lucida Benth.

East Africa

Ph

S/T

P

Cu/M

 

1

61

Mussaenda erythrophylla Schumach. & Thonn.

Tropical West Africa

Ph

S

P

O

 

1

61

Richardia scabra L.

Tropical America

Th

H

A

 

+

6

 

Rutaceae

Citrus aurantifolia (Christm.) Swingle

India and Myanmar

Ph

T

P

Cr

+

1

12

Sapindaceae

Cardiospermum halicacabum L.

Tropical America, India, and Africa

Ch

H

P

M

+

19

60

Scrophulariaceae

Digitalis purpurea L.

Europe

Ch

H

A/P

M

+

5

62

Scoparia dulcis L.

Tropical America

Ch

H

P

M

+

6

 

Torenia fournieri Linden ex Fourn.

Vietnam

Th

H

A

 

+

5

 

Veronica anagallis-aquatica L.

Europe

Ch

H

A/P

M

+

18

62

Veronica arvensis L.

South Europe and Southwest Asia

Th

H

A

M

+

8

 

Veronica peregrina L.

North America

Th

H

A

M

+

19

8

Veronica persica Poir.

West Asia and Europe

Ch

H

A/B

 

+

12

 

Solanaceae

Brugmansia ×candida Pers.

South America

Ph

T

P

 

+

1

47

Capsicum annuum L.

Mexico and South America

Ch

S/H

A/P

Cr/M

+

33

42

Datura stramonium L.

Mexico and South America

Ph

S/H

P

Cu/O

+

33

63

Datura inoxia Mill.

America

Ch

H

P

O

+

6

63

Datura metel L.

America

Th

H/S

A

M

+

6

28

Hyoscyamus niger L.

Britain

Ch

H

B

Cu/M

+

15

40

Lycopersicon esculeutum Mill.

Tropical America

Ch

H

A/P

Cr

 

2

42

Nicandra physaloides (L.) Gaertn.

Peru

Th

H

A

Cr/M

+

33

 

Petunia ×hybrida Vilm.

South America

Th

H

A

O

+

1

47

Physalis angulata L.

South America

Th

H

A

M

+

11

8

Physalis peruviana L.

South America

Ch

H

P

Cr/M

+

5

 

Physalis pubescens L.

America

Th

H

A

 

+

15

 

Solanum chrysotrichum Schltdl.

Central and South America

Ch

S

P

Cr

+

1

64

Solanum pseudocapsicum L.

South America

Ch

S

P

M/O

+

8

28

Solanum pseudocapsicum L. var. diflorum (Vell.) Bitter

Brazil

Ch

S

P

O

+

33

 

Solanum sisymbriifolium Lam.

South America

Th

H

A

Cr/M

+

1

 

Tamaricaceae

Myricaria squamosa Desv.

India, Pakistan and Afghanistan

Ch

S

P

M

 

5

 

Theaceae

Schima crenata Korth.

Indochina Peninsula, Malaysia and Indonesia

Ph

T

P

  

1

 

Tiliaceae

        

Corchorus capsularis L.

Tropical Asia

Th

S

A

Cu

+

14

 

Corchorus olitorius L.

India

Th

H

A

Cu

+

11

39

Tropaeolaceae

Tropaeolum majus L.

Peru and Brazil

Th

H

A

O

+

3

 

Ulmaceae

Ulmus laevis Pall.

Europe

Ph

T

P

O

+

1

65

Urticaceae

Pilea microphylla (L.) Liebm.

South America

Th

H

A

M

+

6

 

Verbenaceae

Duranta repens L.

Tropical America

Ph

S

P

M

+

5

 

Lantana camara L.

Tropical America

Ch

S/L

P

M/O

+

7

 

Phyla nodiflora (L.) Greene

California

Ch

H

P

M

+

11

60

Stachytarpheta jamaicensis (L.) Vahl

Central and South America

Ch

H/S

P

M/O

+

6

 

Tectona grandis L. f.

India, Myanmar, Malaysia and Indonesia

Ph

T

P

M/W

+

4

2

Monocotyledons

Agavaceae

Agave americana L.

Tropical America and Mexico

He

H

P

Cr/Cu/O

+

14

 

Agave americana L. var. variegata Hort.

Tropical America

He

H

P

Cr/O

+

2

3

Agave rigida Mill.

America

He

H

P

Cu

 

14

58

Agave sisalana Perrine

Tropical America

He

H

P

Cu/O

+

1

23

Amaryllidaceae

Hippeastrum rutilum (Ker Gawl.) Herb.

Peru, Brasil

He

H

P

O

 

1

66

Narcissus tazetta L. var. chinensis Roem.

Middle Europe, Mediterranean and West Asia

He

H

P

M/O

+

4

67

Nothoscordum gracile (Aiton) Stearn

Temperate South America

He

H

P

O

+

1

55

Zephyranthes grandiflora Lindl.

Mexico and Central America

He

H

P

M

+

3

55

Araceae

Caladium bicolor (Aiton) Vent.

South America

Cr

H

P

O

+

1

 

Dieffenbachia picta (Lodd.) Schott

South America

Cr

H

P

O

+

4

 

Elaeis guineensis Jacq.

Tropical Africa

Ph

T

P

Cu/M

+

19

18

Commelinaceae

Zebrina pendula Schnizl.

Mexico

Ch

H

P

M/O

+

1

68

Cyperaceae

Cyperus alternifolius L. ssp. flabelliformis (Rottb.) Kükenth.

Madagascar

He

H

P

O

+

2

2

Eleocharis valleculosa Ohwi f. setosa (Ohwi) Kitag.

Korea and Japan

He

H

P

O

+

33

38

Iridaceae

Eleutherine plicata Herb.

West Indies

He

H

P

M

 

3

 

Gladiolus ×gandavensis Van Houtte

Mediterranean, Asia Minor, Africa

Cr

H

P

M/O

+

2

 

Sisyrinchium rosulatum E.P. Bicknell

North America

Cr

H

A

O

+

14

69

Liliaceae

Aloe vera (L.) Burm. f. var. chinensis (Haw.) Berg.

South Africa, Madagascar, Arab, South Asia and India

He

H

P

Cr/M/O

+

1

 

Limnocharitaceae

Limnocharis flava (L.) Buch.

Tropical America

He

H

P

O

+

3

2

Musaceae

Musa basjoo Sieb. & Zucc.

Ryukyu Islands

Ch

H

P

Cu/M

+

1

23

Poaceae

Agrostis canina L. var. formosana Hack.

Temperate Asia and Europe

Ch

H

P

O

+

6

 

Avena fatua L.

Europe

Th

H

A

Cr/M

+

20

8

Axonopus compressus (Sw.) P. Beauv.

Tropical America

Ch

H

P

Cr/O

+

6

 

Bambusamultiplex (Lour.) Raeusch. ex Schult. & Schult. f.

Vietnam

Ch

H

P

O

+

14

 

Brachiaria mutica (Forsk.) Stapf

Tropical Africa

Ch

H

P

Cr/O

+

2

8

Briza minor L.

Europe

Th

H

A

O

+

1

 

Bromus catharticus Vahl

South America

Ch

H

A/P

Cr

+

1

70

Cenchrus echinatus L.

Tropical America

Th

H

A

Cr

+

1

71

Chloris virgata Sw.

North America

Th

H

Ann

Cr

+

20

 

Coix lacryma-jobi L.

Tropical Asia

Th

H

A

Cr/M

+

33

72

Cynosurus cristatus L.

Mediterranean

Ch

H

P

Cr/O

+

1

 

Dactylis glomerata L.

Europe

Ch

H

P

Cr/O

+

12

72

Dichanthelium acuminatum (Sw.) Gould & C. A. Clark

North America

Ch

H

P

 

+

1

 

Digitaria sanguinalis (L.) Scop.

Europe

Th

H

A

Cr

+

12

8

Eleusine coracana (Linn.) Gaertn.

Tropical Africa

Th

H

A

Cr/Cu

+

14

71

Festuca arundinacea Schreb.

Europe, Central and North Asia

Ch

H

P

Cr/O

+

1

8

Lolium multiflorum Lam.

South Europe, North Africa and Southwest Asia

Ch

H

A/B/P

Cr/O

+

3

67

Lolium perenne L.

Europe

Ch

H

P

Cr/O

+

19

67

Lolium temulentum L.

Europe

Th

H

A

M

+

13

67

Melinis repens (Willd.) Zizka

South Africa

Ch

H

P

O

+

1

 

Panicum maximum Jacq.

Tropical Africa

Ch

H

P

Cr

+

2

 

Paspalidium flavidum (Retz.) A. Camus

Tropical Asia

Ch

H

P

Cr

+

4

8

Paspalum conjugatum Bergius

Latin America

Ch

H

P

Cr/O

+

6

8

Paspalum dilatatum Poir.

South America

Ch

H

P

Cr

+

8

 

Paspalum notatum Flugge

Tropical and subtropical America

Ch

H

P

Cr/O

+

1

71

Pennisetum polystachion (L.) Schult.

Tropical Africa

Ch

H

P

Cr

+

2

 

Pennisetum purpureum Schumach.

Tropical Africa

Ch

H

P

Cr/O

+

1

71

Phalaris arundinacea L.

North Hemisphere

Ch

H

P

Cr/O

+

19

8

Phalaris canariensis L.

Madagascar and North Africa

Ch

H

P

Cr

+

33

2

Phalaris minor Retz.

Mediterranean

Th

H

A

Cr

+

1

71

Phalaris paradoxa L.

Mediterranean and Southwest Asia

Th

H

A

 

+

1

71

Phleum pratense L.

Temperate Eurasia

Ch

H

P

Cr/O

+

8

72

Pleioblastus gramineus (Bean) Nakai

Japan

Ch

H

P

Cu/O

+

5

 

Rhynchelytrum repens (Willd.) Hubb.

Tropical South Africa

Ch

H

P

O

+

1

 

Setaria geniculata (Lam.) P. Beauv.

Tropical America

Ch

H

P

Cr

+

9

73

Setaria glauca (L.) P. Beauv.

Eurasia

Ch

H

A/P

Cr/O

+

33

8

Setaria pallidifusca (Schumach.) Stapf & Hubb.

Africa and Tropical Eurasia

Ch

H

P

 

+

19

73

Setaria palmifolia (Koenig) Stapf

Africa

Ch

H

P

Cr/O

+

19

 

Setaria viridis (L.) P. Beauv.

Temperate Eurasia

Th

H

A

Cr/M

+

33

38

Sorghum halepense (L.) Pers.

Mediterranean

Ch

H

P

Cr/Cu

+

6

71

Sorghum sudanense (Piper) Stapf

Africa

Th

H

A

Cr

+

13

38

Spartina alterniflora Loisel.

North America

Th

H

P

 

+

7

74

Spartina anglica C. E. Hubbard

Europe

Th

H

P

 

+

2

74

Sporobolus pulvinatus Swallen

North America

Th

H

A

Cr

 

1

38

Pontederiaceae

Eichhornia crassipes (Mart.) Solms

Brazil

He

H

P

Cr/Cu

+

33

 

Xyridaceae

Xyris capensis Thunb. var. schoenoides (Mart.) Nilsson

Tropical Africa

He

H

P

M

 

6

23

LF: life form. H: herb; L: liana; V: vine; S: shrub; T: tree

HA: habit. A: annual; B: biennial; P: perennial; A/B: annual or biennial; A/P: annual or perennial; B/P: biennial or perennial; A/B/P: annual or biennial or perennial

RS: Raunkiaer system. Ch: chamaephyte; Cr: cryptophyte; H: hemicryptophyte; Ph: phanerophyte; Th: therophyte

U: usage. Cr: Crop; Cu: cultivation; O: ornamental; M: medicinal; Ti: timbering

W: species listed in Global Compendium of Weeds (Randall, 2002)

RE: references: 1. Jhang (1993); 2. Wu (2001); 3. Sing (1996); 4. South China Institute of Botany (2003); 5. Liou (1997); 6. He (1986); 7. Fu (2001); 8. Wu et al. (2004); 9. Chen (1964); 10. Kunming Institute of Botany, the Chinese Academy of Sciences (2000); 11. Kunming Institute of Botany, the Chinese Academy of Sciences (1991); 12. South China Institute of Botany (1991); 13. Jheng (1993); 14. Jheng (2005; 15. South China Institute of Botany (1995); 16. Ding and Wang (1997); 17. Kunming Institute of Botany, the Chinese Academy of Sciences (2004); 18. Chen et al. (1997); 19. Ye and Chen (2005a); 20. South China Institute of Botany (2000); 21. Liou (1977); 22. Northwest Institute of Botany of the Chinese Academy of Sciences(1981); 23. Li et al.(2000); 24. Wu (1994); 25. Jilin Provincial Institute of Tradition Chinese Medicine (1982); 26. Fu (1995); 27.Northwest Institute of Botany, the Chinese Academy of Sciences (1985); 28. Editorial Board of Institute of Botany in Jiangsu (1982); 29. Ye and Chen (2005b); 30. Kunming Institute of Botany, the Chinese Academy of Sciences (1995); 31. Northwest Institute of Botany of the Chinese Academy of Sciences (1974); 32. Editiorial Board of Hong Kong Herbarium & South China Botanical Garden (2007); 33. Ciou (1993); 34. Editorial Board for Flora of Guizhou (1989); 35. Cheng (1997); 36. Kunming Institute of Botany, the Chinese Academy of Sciences (2006a); 37. Editorial Board of Flora of Zhejiang (1992); 38. Liou (2004); 39. He (1989); 40. Editorial Board for Flora of Guizhou (1982); 42. Chen (1974); 43. Liu (8); 44. Chen et al. (1992); 45. Li et al. (1989); 46. Editorial Board of Science and Technology in Fujian (1989); 47. Kunming Institute of Botany, the Chinese Academy of Sciences (1979); 48. Northwest Institute of Botany, the Chinese Academy of Sciences (1985); 49. Ye and Wu (1993); 50. He et al. (1987); 51. Editorial Board of Flora of Zhejiang (1989); 52. Editorial Board of Guangxi Institute of Botany Academia Guanguxana (1991); 53. Editorial Board of Flora of Zhejiang (1992); 54. Editorial Board of Southwest Forestry University (1991); 55. Kunming Institute of Botany, the Chinese Academy of Sciences (1997); 56. Hunan Institute of Forestry Soil (1976); 57. Fu (2000); 58. Editorial Committee for Flora of Sichuan (1991a); 59. Editorial Board of Science and Technology in Fujian (1985)60. Kunming Institute of Botany, the Chinese Academy of Sciences (1977); 61. Kunming Institute of Botany, the Chinese Academy of Sciences (2003b); 62. Kunming Institute of Botany, the Chinese Academy of Sciences (2006b); 63. Web info.: Flora of China; 64. Editorial Board of Science and Technology in Fujian (1993); 65. Liou (1997); 66. Ching (1977); 67. He (1991); 68. Kunming Institute of Botany, the Chinese Academy of Sciences (1983); 69. Editorial Committee for Flora of Sichuan (1991); 70. Editorial Board for Flora of Guizhou (1988); 71. Kunming Institute of Botany, the Chinese Academy of Sciences (2003); 72. Northwest Institute of Botany, the Chinese Academy of Sciences (1976); 73. Li (1993); 74, Chen et al. (2007)

The composition of the dominant naturalized families and genera implied partially their sizes worldwide (Heywood 1989), and their climatic properties. While naturalized species can be placed in 84 families (Table 1), 45% of them are from only three families, Asteraceae, Poaceae and Fabaceae (Fig. 1a), the major contributors to the alien floras in many regions of Asia (Wu et al. 2004a, b; Zerbe et al. 2004) and of the world (Pyšek 1998). Nevertheless, other important families of the naturalized flora varied slightly in different regions of the world, probably in response to differences of climate in a particular area. Integrated with the fact that a remarkable proportion of naturalized species originated in the tropics, plant invasions in China confirm the assumption that species adapt better to new land where the climate is similar to their homeland (Corlett 1988, 1992). Convolvulaceae, Euphorbiaceae, and Amaranthaceae are considered to be tropical or warm temperate families, and Brassicaceae and Caryophyllaceae are more adapted to cooler climates, such as temperate China, due to similar climates in their home range (Weber 1997; Vilà and Muñoz 1999; Pyšek et al. 2002; Rouget and Richardson 2003). Over representation of Cactaceae species may be the case as well. The xeric environments, such as the extensive deserts in the North (Nei Mongol), in the West (Xinjiang), and in dry, hot valleys of the Southwest (Sichuan, Yunnan) provide suitable habitats for Cactaceae. Based on the ratio of naturalized species to global species per family, the importance of Euphorbiaceae and Cactaceae emerged. Each of these families has around 650–750 species, but the over-representation of these two families suggests that they are especially successful in China (Rejmánek et al. 1991) and deserve further attention.

In contrast, the species numbers of the dominant genera did not completely coincide with the size of their world species pools or the importance of their respective families in the naturalized flora in China. Although Crotalaria and Euphorbia have hundreds of species worldwide, Oenothera and Amaranthus are only intermediate in size, with 124 and 60 species respectively (Mabberley 1997). No particular pattern was found between the worldwide size of the species pool and the dominancy of naturalized genera. Overrepresentation of Cinchona and Melilotus, however, may deserve deliberate investigation due to their high values in the ratio of naturalized versus global species number per genus.

The high percentage (84%) of newly naturalized genera in the flora seems to support Darwin’s idea that exotic floras are gaining disproportionately more new genera than new species (Darwin 1859). The idea is that species in exotic genera may be exposed to less competition when they do not have to interact with native congeners. This assumption is also supported by the high percentage (52%) of genera with only one naturalized species. A similar pattern is not shown for naturalized families. Only 16% of the families have less than five naturalized species, and only 10% of the naturalized families are new to China. Darwin’s hypothesis has also been supported by data from California (Rejmánek 1998), but not from islands (Daehler 2001; Duncan and Williams 2002). However, we do not know whether this is simply a result of random selection.

Life forms and habits of most naturalized species coincided with the features of the families and genera that have the most naturalized species (Table 1; Fig. 1a, b). For example, Brassicaceae, Fabaceae, Asteraceae and Poaceae are mainly composed of therophytes, phanerophytes, chamaephytes, and hemicryptophytes. The large number of perennial species (phanerophytes, chamaephytes, and hemicryptophytes) in China may be an indicator of serious environmental impact in the future (Huang et al. 2009).

The remarkable percentage of naturalized species with medicinal properties may be the result of China’s long history of use of herbal medicines and the definition of medicinal plants. In China, herbal medicines have been used for thousand years, and the application of herbal medicines is highly popular and influential even today. Furthermore, almost every plant can be used to improve or supplement human health more or less according to ancient references (Li 1578; Boym 1656). It appears that the proportion of naturalized species with so-called medicinal properties may be magnified. Although medicinal species are important to human society and have been introduced in many places (Maheshwari and Paul 1975; Klemow et al. 2002), only a relatively small proportion of them are naturalized or invasive (Austin 2000; Weber 2003).

The significant correlations between plant invasions and local biodiversity as well as climates may imply that suitable environment for growth is a key factor determining the biodiversity of native and naturalized floras (Figs. 2, 3). Mesic environment of southern China accommodated most of native species; however, the high biodiversity did not perform as resistance to plant invasions in these areas. Exponentially increased number of naturalized species along native number per log area may be a result of unfulfilled niches and habitat limitation. Disturbances may be responsible as well; however, further information is not currently available for better understandings. Close and significant relationship between invasion index and climatic factors (Table 2), such as annual average temperature, annual lowest temperature, temperature difference, and annual average precipitation, reinforces this descending trend of plant invasion across climatic zones, which symbolize available growth seasons and conditions. This pattern is also very similar to that of altitudinal gradients (Lingua et al. 2008; Mallen-Cooper and Pickering 2008). Habitat limitation seems to be responsible for the diversity of both of naturalized and native species along horizontal climatic gradients of temperature and precipitation. Furthermore, the decrease in sizes of the global species pool from the tropics to the Arctic/Antarctic may indicate the decreasing number of species available for introduction (Barthlott et al. 1996; Kier et al. 2005). We do not, however, have an explanation for why tropical American species were so copiously represented, further studies are urgently needed for a better understanding of plant invasions in China.
Fig. 3

Climatic zones and intensity of plant invasions in China. Black lines indicate provincial boundaries. Numbers are an index of number of casual and naturalized species/log (area of a particular region in km2; Vitousek et al. 1997) in each province. Colors designate different climatic zones across China

Although only few anthropogenic factors are significantly correlated with the index of invasion, the effects of the local economy on plant invasions are indisputable (Table 3). Significant correlations of total length of transportation, which was highly correlated to demography, implies the population size (data not shown) and moving efforts of plant invasions in the regional scale (Gelbard and Belnap 2003; Liu et al. 2005). It was a surprise quantity of freight, extent of freight turnover, and number of international tourists showed no contributions to plant invasions in China. Perhaps latest data were not comprehensive and our analysis did not reflect the impacts of the local economy and development on plant introduction. Nevertheless, with an increase in transportation length facilitated by booming economy, the relationship with plant invasions should be monitored to prevent further impacts (Dong et al. 2008).

Although China’s naturalized flora is relatively small, the proportion species occurring nation-wide (11.4%) to the total number of naturalized species coincides with the tens rule. Moreover, the taxonomic and biogeographical patterns of plant invasions in China are very similar to patterns in neighboring regions (Corlett 1988; Enomoto 1999; Koh et al. 2000; Wu et al. 2003; Wu et al. 2004a, b). However, the documentation of naturalized species, potential invaders, and the status of introduced species, is still far from sufficient. It is worrisome that knowledge and study on naturalized species, invasive species, and biological invasions is scanty in China. We recommend that extra attention be paid to certain plant families, such as Euphorbiaceae and Cactaceae, while additional studies are required for a few critical genera, such as Cinchona and Melilotus. In conclusion, the above-mentioned close relationship between climate and plant invasions may, furthermore, alert people in the warmer parts of China that extreme care should be given to introducing species.

Notes

Acknowledgments

We thank Dr. David E. Boufford for improving the writing and offering valuable suggestions on the organization and ideas of this manuscript; Drs. Keping Ma, Lisong Wang and Zhenyu Li from Academia Sinica Beijing to provide acurate numbers of native species in China; two annonomus reviewers to provide valuable comments.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Supplementary material

10530_2009_9620_MOESM1_ESM.doc (77 kb)
Supplementary material 1 (DOC 77 kb)
10530_2009_9620_MOESM2_ESM.doc (66 kb)
Supplementary material 2 (DOC 66 kb)

References

  1. Austin DF (2000) Bindweed (Convolvulus arvensis, Convolvulaceae) in North America: From medicine to menace. J Torrey Bot Soc 127:172–177CrossRefGoogle Scholar
  2. Barthlott W, Lauer W, Placke A (1996) Global distribution of species diversity in vascular plants: towards a world map of biodiversity. Erdkunde 50:317–327CrossRefGoogle Scholar
  3. Boym M (1656) Flora Sinensis, Vienna, AustriaGoogle Scholar
  4. Cadotte MW, Murray BR, Lovett-Doust J (2006) Ecological patterns and biological invasions: using regional species inventories in macroecology. Bio Invasions 6:809–821CrossRefGoogle Scholar
  5. Chytrý M, Maskell LC, Pino J, Pyšek P, Vilà M, Font X, Smart SM (2008) Habitat invasions by alien plants: a quantitative comparison among Mediterranean, subcontinental and oceanic regions of Europe. J Appl Ecol 45:448–458CrossRefGoogle Scholar
  6. Corlett RT (1988) The naturalized flora of Singapore. J Biogeo 15:657–663CrossRefGoogle Scholar
  7. Corlett RT (1992) The naturalized flora of Hong Kong: a comparison with Singapore. J Biogeo 19:421–430CrossRefGoogle Scholar
  8. Daehler C (2001) Darwin’s naturalization hypothesis revisited. Am Nat 158:324–330CrossRefPubMedGoogle Scholar
  9. Dalmazzone S (2000) Economic factors affecting vulnerability to biological invasions. In: Perrings C, Williamson M, Dalmazzone S (eds) The economics of biological invasions. Edward Elgar Publishing, CheltenhamGoogle Scholar
  10. Darwin C (1859) On the origin of species. J. Murray, LondonGoogle Scholar
  11. Ding J, Mack RN, Lu P, Ren M, Huang H (2008) China’s booming economy is sparking and accelerating biological invasions. BioSci 58:317–324CrossRefGoogle Scholar
  12. Dong SK, Cui BS, Yang ZF, Liu SL, Liu J, Ding ZK, Zhu JJ (2008) The role of road distribution in the dispersal and spread of Ageratina adenophora along the Dian-Myanmar International Road. Weed Res 48:282–288CrossRefGoogle Scholar
  13. Duncan RP, Williams PA (2002) Darwin’s naturalization hypothesis challenged. Nature 417:608–609CrossRefPubMedGoogle Scholar
  14. Enomoto T (1999) Naturalized weeds from foreign countries into Japan. In: Yano E, Matsuo K, Shiyomi M, Andow DA (eds) Biological invasions of ecosystem by pests and beneficial organisms. National Institute of Agro-Environmental Science, Tsukuba, pp 1–14Google Scholar
  15. Gelbard JL, Belnap J (2003) Roads as conduits for exotic plant invasions in a semiarid landscape. Conser Bio 17:420–432CrossRefGoogle Scholar
  16. Heywood VH (1989) Patterns, extents, and modes of invasions by terrestrial plants. In: Drake JA, Mooney HA, di Castri F, Groves RH, Kruger FJ, Rejmánek M, Williamson M (eds) Biological invasions: a global perspective, scope 37. John Wiley, New York, pp 31–60Google Scholar
  17. Huang QQ, Wu JJ, Bai YY, Zhou L, Wang GX (2009) Identifying the most noxious invasive plants in China: role of geographical origin, life form and means of introduction. Biodivers Conserv 18:305–316CrossRefGoogle Scholar
  18. Jenkins PT (1996) Free trade and exotic species introductions. Conser Bio 10:300–302CrossRefGoogle Scholar
  19. Kier G, Mutke J, Dinerstein E, Ricketts TH, Kuper W, Kreft H, Barthlott W (2005) Global patterns of plant diversity and floristic knowledge. J Biogeo 32:1107–1116CrossRefGoogle Scholar
  20. Klemow KM, Clements DR, Threadgill PF, Cavers PB (2002) The biology of Canadian weeds. 116. Echium vulgare L. Can J Plant Sci 82:235–248Google Scholar
  21. Kloot PM (1987) The naturalized flora of South Australia 4. Its manner of introduction. J Adelaide Bot Gar 10:223–240Google Scholar
  22. Koh KS, Na JG, Suh MH, Kil JH, Ku YB, Yoon JH, Oh HK (2000) The effects of alien plants on ecosystem and their management (I). The Plant Taxonomic Society of Korea, Korea In KoreanGoogle Scholar
  23. Lake JC, Leishman MR (2004) Invasion success of exotic plants in natural ecosystems: the role of disturbance, plant attributes and freedom from herbivores. Bio Conser 117:215–226CrossRefGoogle Scholar
  24. Levin JM, D’Antonio CM (2003) Forecasting biological invasions with increasing international trade. Conser Bio 17:322–326CrossRefGoogle Scholar
  25. Li SZ (1578) Ben Cao Gang Mu (Compendium of Materia Medica), China (In Chinese)Google Scholar
  26. Lingua E, Cherubini P, Motta R, Nola P (2008) Spatial structure along an altitudinal gradient in the Italian central Alps suggests competition and facilitation among coniferous species. J Veg Sci 19:425–436CrossRefGoogle Scholar
  27. Liu J, Liang SC, Liu FH, Wang RQ, Dong M (2005) Invasive alien plant species in China: regional distribution patterns. Diver Distr 11:341–347CrossRefGoogle Scholar
  28. Liu J, Dong M, Miao SL, Zhen YL, Song MH, Wang RQ (2006) Invasive alien plants in China: role of clonality and geographical origin. Bio invasions 8:1461–1470CrossRefGoogle Scholar
  29. Mabberley DJ (1997) The plant—book. A portable dictionary of the vascular plants. Cambridge University Press, UKGoogle Scholar
  30. Mack RN (2003) Plant naturalizations and invasions in the eastern United States: 1634–1860. Ann Missouri Bot Gar 90:77–90CrossRefGoogle Scholar
  31. Mack RN, Erneberg M (2002) The United States naturalized flora: largely the product of deliberate introductions. Ann Missouri Bot Gar 89:176–189CrossRefGoogle Scholar
  32. Maheshwari JK, Paul SR (1975) The exotic flora of Ranchi India. J Bombay Nat Hist Soc 72:158–188Google Scholar
  33. Mallen-Cooper J, Pickering CM (2008) Linear declines in exotic and native plant species richness along an increasing altitudinal gradient in the Snowy Mountains, Australia. Aus Ecol 33:684–690CrossRefGoogle Scholar
  34. McNeely JA (2000) The great reshuffling: how alien species help feed the global economy. In: Sandlund OT, Schei PJ, Viken Å (eds) Invasive species and biodiversity management. Kluwer, DordrechtGoogle Scholar
  35. Mehrhoff LJ (2000) Immigration and expansion of the New England Flora. Rhodora 102:280–298Google Scholar
  36. Mueller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. John Wiley, New YorkGoogle Scholar
  37. Pyšek P (1998) Is there a taxonomic pattern to plant invasions? Oikos 82:282–294CrossRefGoogle Scholar
  38. Pyšek P, Prach K (2003) Research into plant invasions in the Czech Republic: history and focus. Bio Invasion 5:337–348CrossRefGoogle Scholar
  39. Pyšek P, Sádlo J, Mandák B (2002) Catalogue of alien plants of the Czech Republic. Preslia Praha 74:97–186Google Scholar
  40. Pyšek P, Richardson DM, Rejmánek M, Webster GL, Williamson M, Kirschner J (2004) Alien plants in checklists and floras: towards better communication between taxonomists and ecologists. Taxon 53:131–143CrossRefGoogle Scholar
  41. Rejmánek M (1998) Invasive plants and invasible ecosystems. In: Sandlund OT, Schei PJ, Viken Å (eds) Invasive species and biodiversity managementp. Kluwer, Dordrecht, pp 79–102Google Scholar
  42. Rejmánek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 77:1655–1661CrossRefGoogle Scholar
  43. Rejmánek M, Thomsen CD, Peters ID (1991) Invasive vascular plants of California. In: Groves RH, Di Castri F (eds) Biogeography of mediterranean invasions. Cambridge University Press, Cambridge, pp 81–101CrossRefGoogle Scholar
  44. Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Diver Distr 6:93–107CrossRefGoogle Scholar
  45. Rouget M, Richardson DM (2003) Inferring process from pattern in plant invasions: a semimechanistic model incorporating propagule pressure and environmental factors. Am Nat 162:713–724CrossRefPubMedGoogle Scholar
  46. Ruiz GM, Carlton JT (2003) Global pathways of biotic invasions. Island Press, WashingtonGoogle Scholar
  47. Shigesada N, Kawasaki K (1997) Invasion of alien species. Biological Invasions: theory and practice. Oxford University Press, New YorkGoogle Scholar
  48. Valladares-Padua C (2006) Importance of knowledge-intensive economic development to conservation of biodiversity in developing countries. Conser Biology 20:700–701CrossRefGoogle Scholar
  49. Van der Wal R, Truscott AM, Pearce ISK, Cole L, Harris MP, Sarah W (2008) Multiple anthropogenic changes cause biodiversity loss through plant invasion. Global Change Bio 14:1428–1436CrossRefGoogle Scholar
  50. Vilà M, Muñoz I (1999) Patterns and correlates of exotic and endemic plant taxa in the Balearic Islands. Ecologia Mediterranea 25:153–161Google Scholar
  51. Vitousek PM, D’Antonio CM, Loope LL, Rejmánek M, Westbrooks R (1997) Introduced species: a significant components of human-caused global change. New Zea J Ecol 21:1–16Google Scholar
  52. Weber EF (1997) The alien flora of Europe: a taxonomic and biogeographic review. J Veg Sci 8:565–572CrossRefGoogle Scholar
  53. Weber E (2003) Invasive plant species of the world. A reference guide to environmental weeds. CABI Publishing, UKGoogle Scholar
  54. Weber E, Li B (2008a) Plant invasions in China: what is to be expected in the wake of economic development? Bioscience 58:437–444CrossRefGoogle Scholar
  55. Weber E, Li B (2008b) Invasive alien plants in China: diversity and ecological insights. Biol Invasions 10:1411–1429CrossRefGoogle Scholar
  56. Williamson M (1996) Biological invasions. Chapman Hall, LondonGoogle Scholar
  57. Williamson M, Fitter A (1996) The varying success of invaders. Ecology 77:1661–1666CrossRefGoogle Scholar
  58. Wu SH, Chaw SM, Rejmánek M (2003) Naturalized Fabacease (Leguminosae) species in Taiwan: the first approximation. Bot Bull Acad Sin 44:59–66Google Scholar
  59. Wu SH, Hsieh CH, Rejmánek M (2004a) Catalogue of the naturalized flora of Taiwan. Taiwania 49:16–31Google Scholar
  60. Wu SH, Hsieh CF, Chaw SM, Rejmánek M (2004b) Plant invasions in Taiwan: Insights from the flora of casual and naturalized alien species. Diver Distri 10:349–362CrossRefGoogle Scholar
  61. Zerbe S, Choi IK, Kowarik I (2004) Characteristics and habits of non-native plant species in the city of Chonju, southern Korea. Ecol Res 19:91–98CrossRefGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • Shan-Huah Wu
    • 1
  • Hao-Ting Sun
    • 2
  • Yung-Ching Teng
    • 3
  • Marcel Rejmánek
    • 4
  • Shu-Miaw Chaw
    • 5
  • T.-Y. Aleck Yang
    • 6
    • 7
  • Chang-Fu Hsieh
    • 1
  1. 1.Institute of Ecology and Evolutionary BiologyNational Taiwan UniversityTaipeiTaiwan
  2. 2.Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
  3. 3.Biodiversity Association of TaiwanTaipeiTaiwan
  4. 4.Department of Ecology and EvolutionUniversity of California at DavisDavisUSA
  5. 5.Biodiversity Research CenterAcademia SinicaTaipeiTaiwan
  6. 6.Department of BotanyNational Museum of Natural ScienceTaichungTaiwan
  7. 7.Department of Life ScienceNational Chung Hsing UniversityTaichungTaiwan

Personalised recommendations