Skip to main content

Advertisement

Log in

Native Cuscuta campestris restrains exotic Mikania micrantha and enhances soil resources beneficial to natives in the invaded communities

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Nutrients in exotic species and invaded communities play a key role in determining the dynamics of invaders and the invasibility of a receipt community. This study focused on the effects of the native holoparasite Cuscuta campestris (for short Cuscuta) on nutrients in the exotic invasive Mikania micrantha (for short Mikania) and stands invaded by Mikania. We conducted a set of field investigations on Mikania with Cuscuta parasitism for 1–4 years, and measured soil properties, community composition, and the growth and nutrient content of Mikania and Cuscuta in two types of sub-communities (i.e. with Mikania only, or with Mikania and Cuscuta). Cuscuta dramatically reduced the cover, biomass, and nutrients (i.e. N, P, and K content) of Mikania, significantly enhanced soil water, pH and nutrient content (i.e. organic matter, total N and P, available P and K), and greatly increased the cover and species richness of native plants. In addition, N and K of Cuscuta were positively correlated with N of Mikania, which was negatively associated with soil total N, available P and K. These findings suggest that Cuscuta may be an effective measure against Mikania and be beneficial to the restoration of invaded communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alcantara E, Morales-Garcia M, Diaz-Sanchez J (2006) Effects of broomrape parasitism on sunflower plants: growth, development, and mineral nutrition. J Plant Nutr 29:1199–1206. doi:10.1080/01904160600767351

    Article  CAS  Google Scholar 

  • Allen SE (1989) Chemical analysis of ecological materials. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Alpert P (2006) The advantages and disadvantages of being introduced. Biol Invasions 8:1523–1534. doi:10.1007/s10530-005-5844-z

    Article  Google Scholar 

  • Alpert P, Bone E, Holzapfel C (2000) Invasiveness, invasibility, and the role of environmental stress in preventing the spread of non-native plants. Perspect Plant Ecol Evol Syst 3:52–66. doi:10.1078/1433-8319-00004

    Article  Google Scholar 

  • Bardgett RD, Smith RS, Shiel RS, Peacock S, Simkin JM, Quirk H et al (2006) Parasitic plants indirectly regulate below-ground properties in grassland ecosystems. Nature 439:969–972. doi:10.1038/nature04197

    Article  PubMed  CAS  Google Scholar 

  • Benvenuti S, Dinelli G, Bonetti A, Catizone P (2005) Germination ecology, emergence and host detection in Cuscuta campestris. Weed Res 45:270–278. doi:10.1111/j.1365-3180.2005.00460.x

    Article  Google Scholar 

  • Blumenthal DM (2006) Interactions between resource availability and enemy release in plant invasion. Ecol Lett 9:887–895. doi:10.1111/j.1461-0248.2006.00934.x

    Article  PubMed  Google Scholar 

  • Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59:39–45. doi:10.1097/00010694-194501000-00006

    Article  CAS  Google Scholar 

  • Bremner JM, Mulvaney CS (1982) Nitrogen-total. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis (part 2), 2nd edn. ASA, Madison, pp 595–624

    Google Scholar 

  • Buckley YM, Downey P, Fowler SV, Hill R, Memmot J, Norambuena H et al (2003) Are invasives bigger? A global study of seed size variation in two invasive shrubs. Ecology 84:1434–1440. doi:10.1890/0012-9658(2003)084[1434:AIBAGS]2.0.CO;2

    Article  Google Scholar 

  • Callaway RM, Pennings SC (1998) Impact of a parasitic plant on the zonation of two salt marsh perennials. Oecologia 114:100–105. doi:10.1007/s004420050425

    Article  Google Scholar 

  • Callaway RM, Ridenour WM (2004) Novel weapons: invasive success and the evolution of increased competitive ability. Front Ecol Environ 2:436–443

    Article  Google Scholar 

  • Daehler CC (2003) Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annu Rev Ecol Evol Syst 34:183–211. doi:10.1146/annurev.ecolsys.34.011802.132403

    Article  Google Scholar 

  • Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534. doi:10.1046/j.1365-2745.2000.00473.x

    Article  Google Scholar 

  • De Deyn GB, Raaijmakers CE, Van der Putten WH (2004) Plant community development is affected by nutrients and soil biota. J Ecol 92:824–834. doi:10.1111/j.0022-0477.2004.00924.x

    Article  Google Scholar 

  • Deng X, Feng HL, Ye WH, Yang QH, Xu KY, Cao HL et al (2003) A study on the control of exotic weed Mikania micrantha by using parasitic Cuscuta campestris. J Trop Subtrop Bot 11:117–122

    CAS  Google Scholar 

  • Ding JQ, Reardon R, Wu Y, Zheng H, Fu WD (2006) Biological control of invasive plants through collaboration between China and the United States of America: a perspective. Biol Invasions 8:1439–1450. doi:10.1007/s10530-005-5833-2

    Article  Google Scholar 

  • Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems (N Y, Print) 6:503–523. doi:10.1007/s10021-002-0151-3

    Article  CAS  Google Scholar 

  • Ehrenfeld JG (2004) Implications of invasive species for belowground community and nutrient. Weed Technol 18:1232–1235

    Article  Google Scholar 

  • Elton C (1958) The ecology of invasions by animals and plants. Methuen, London

    Google Scholar 

  • Falkengren-Grerup U, Brink DJ, Brunet J (2006) Land use effects on soil N, P, C and pH persist over 40–80 years of forest growth on agricultural soils. For Ecol Manage 225:74–81. doi:10.1016/j.foreco.2005.12.027

    Article  Google Scholar 

  • Funk JL, Vitousek PM (2007) Resource-use efficiency and plant invasion in low-resource systems. Nature 446:1079–1081. doi:10.1038/nature05719

    Article  PubMed  CAS  Google Scholar 

  • Gough L, Osenberg CW, Gross KL, Collins SL (2000) Fertilization effects on species density and primary productivity in herbaceous plant communities. Oikos 89:428–439. doi:10.1034/j.1600-0706.2000.890302.x

    Article  Google Scholar 

  • Harris MR, Facelli JM (2003) Competition and resource availability in an annual plant community dominated by an invasive species, Carrichtera annua (L. Aschers.), in South Australia. Plant Ecol 167:19–29. doi:10.1023/A:1023981500007

    Article  Google Scholar 

  • Hayes KR, Barry SC (2008) Are there any consistent predictors of invasion success? Biol Invasions 10:483–506. doi:10.1007/s10530-007-9146-5

    Article  Google Scholar 

  • Henderson S, Dawson TP, Whittaker RJ (2006) Progress in invasive plants research. Prog Phys Geogr 30:25–46. doi:10.1191/0309133306pp468ra

    Article  Google Scholar 

  • Herben T, Mandak B, Bimova K, Munzbergova Z (2004) Invasibility and species richness of a community: a neutral model and a survey of published data. Ecology 85:3223–3233. doi:10.1890/03-0648

    Article  Google Scholar 

  • Herron PM, Martine CT, Latimer AM, Leicht-Young SA (2007) Invasive plants and their ecological strategies: prediction and explanation of woody plant invasion in New England. Divers Distrib 13:633–644

    Article  Google Scholar 

  • Hibberd JM, Jeschke WD (2001) Solute flux into parasitic plants. J Exp Bot 52:2043–2049. doi:10.1093/jexbot/52.363.2043

    Article  PubMed  CAS  Google Scholar 

  • Holford ICR (1997) Soil phosphorus: its measurement, and its uptake by plants. Aust J Soil Res 35:227–239. doi:10.1071/S96047

    Article  CAS  Google Scholar 

  • Howard TG, Gurevitch J, Hyatt L, Carreiro M, Lerdau M (2004) Forest invasibility in communities in southeastern New York. Biol Invasions 6:393–410. doi:10.1023/B:BINV.0000041559.67560.7e

    Article  Google Scholar 

  • Jeschke WD, Hilpert A (1997) Sink-stimulated photosynthesis and sink-dependent increase in nitrate uptake: nitrogen and carbon relations of the parasitic association Cuscuta reflexa-Ricinus communis. Plant Cell Environ 20:47–56. doi:10.1046/j.1365-3040.1997.d01-2.x

    Article  CAS  Google Scholar 

  • Krakau M, Thieltges DW, Reise K (2006) Native parasites adopt introduced bivalves of the North Sea. Biol Invasions 8:919–925. doi:10.1007/s10530-005-4734-8

    Article  Google Scholar 

  • Li MG, Zhang WY, Liao WB, Wang BS, Zan QJ (2000) The history and status of the study on Mikania micrantha. Ecol Sci 19:41–45

    Google Scholar 

  • Li WH, Zhang CB, Jiang HB, Xin GR, Yang ZY (2006) Changes in soil microbial community associated with invasion of the exotic weed, Mikania micrantha H.B.K. Plant Soil 281:309–324. doi:10.1007/s11104-005-9641-3

    Article  CAS  Google Scholar 

  • Lian JY, Ye WH, Cao HL, Lai ZM, Wang ZM, Cai CX (2006) Influence of obligate parasite Cuscuta campestris on the community of its host Mikania micrantha. Weed Res 46:441–443. doi:10.1111/j.1365-3180.2006.00538.x

    Article  Google Scholar 

  • Liao WB, Fan Q, Wang BX, Wang YJ, Zhou XY (2002) Discovery of three species of Cuscuta harming Mikania micrantha in South China and their taxonomical identification. Acta Sci Nat Univ Sunyatseni 41:54–56

    Google Scholar 

  • Liu J, Dong M, Miao SL, Li ZY, Song MH, Wang RQ (2006) Invasive alien plants in China: role of clonality and geographical origin. Biol Invasions 8:1461–1470. doi:10.1007/s10530-005-5838-x

    Article  Google Scholar 

  • Lowe S, Browne M, Boudjelas S, Poorter MD (2001) 100 of the world’s worst invasive alien species. A selection from the global invasive species database. IUCN/SSC Invasive Species Specialist Group (ISSG), Auckland, New Zealand

  • March WA, Watson DM (2007) Parasites boost productivity: effects of mistletoe on litterfall dynamics in a temperate Australian forest. Oecologia 154:339–347. doi:10.1007/s00442-007-0835-7

    Article  PubMed  Google Scholar 

  • Michelsen A, Graglia E, Schmidt IK, Jonasson S, Sleep D, Quarmby C (1999) Differential responses of grass and a dwarf shrub to long-term changes in soil microbial biomass C, N and P following factorial addition of NPK fertilizer, fungicide and labile carbon to a heath. New Phytol 143:523–538. doi:10.1046/j.1469-8137.1999.00479.x

    Article  Google Scholar 

  • Mitchell CE, Agrawal AA, Bever JD, Gilbert GS, Hufbauer RA, Klironomos JN et al (2006) Biotic interactions and plant invasions. Ecol Lett 9:726–740. doi:10.1111/j.1461-0248.2006.00908.x

    Article  PubMed  Google Scholar 

  • Nelson DW, Sommers LE (1982) Total carbon, organic carbon, and organic matter. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis (part 2), 2nd edn. ASA, Madison, pp 539–580

    Google Scholar 

  • Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL, Miller RH, Keeney DR, Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis (part 2), 2nd edn. ASA, Madison, pp 403–430

    Google Scholar 

  • Parker C, Riches CR (1993) Parasitic weeds of the world: biology and control. CAB Int., Wallingford

    Google Scholar 

  • Pennings SC, Callaway RM (1996) Impact of a parasitic plant on the structure and dynamics of salt marsh vegetation. Ecology 77:1410–1419. doi:10.2307/2265538

    Article  Google Scholar 

  • Pennings SC, Callaway RM (2002) Parasitic plants: parallels and contrasts with herbivores. Oecologia 131:479–489. doi:10.1007/s00442-002-0923-7

    Article  Google Scholar 

  • Phoenix GK, Press MC (2005) Linking physiological traits to impacts on community structure and function: the role of root hemiparasitic Orobanchaceae (ex-Scrophulariaceae). J Ecol 93:67–78. doi:10.1111/j.1365-2745.2004.00950.x

    Article  Google Scholar 

  • Press MC, Phoenix GK (2005) Impacts of parasitic plants on natural communities. New Phytol 166:737–751. doi:10.1111/j.1469-8137.2005.01358.x

    Article  PubMed  Google Scholar 

  • Richardson DM, Holmes PM, Esler KJ, Galatowitsch SM, Stromberg JC, Kirkman SP et al (2007) Riparian vegetation: degradation, alien plant invasions, and restoration prospects. Divers Distrib 13:126–139

    Article  Google Scholar 

  • Rickey MA, Anderson RC (2004) Effects of nitrogen addition on the invasive grass Phragmites australis and a native competitor Spartina pectinata. J Appl Ecol 41:888–896. doi:10.1111/j.0021-8901.2004.00948.x

    Article  Google Scholar 

  • Sheldon SP, Creed RP (1995) Use of a native insect as a biological control for an introduced weed. Ecol Appl 5:1122–1132. doi:10.2307/2269359

    Article  Google Scholar 

  • Sheley RL, Krueger-Mangold J (2003) Principles for restoring invasive plant-infested rangeland. Weed Sci 51:260–265. doi:10.1614/0043-1745(2003)051[0260:PFRIPI]2.0.CO;2

    Article  CAS  Google Scholar 

  • Shen H, Ye WH, Hong L, Cao HL, Wang ZM (2005) Influence of the obligate parasite Cuscuta campestris on growth and biomass allocation of its host Mikania micrantha. J Exp Bot 56:1277–1284. doi:10.1093/jxb/eri128

    Article  PubMed  CAS  Google Scholar 

  • Shen H, Hong L, Ye WH, Cao HL, Wang ZM (2007) The influence of the holoparasitic plant Cuscuta campestris on the growth and photosynthesis of its host Mikania micrantha. J Exp Bot 58:2929–2937. doi:10.1093/jxb/erm168

    Article  PubMed  CAS  Google Scholar 

  • Thomas MB, Reid AM (2007) Are exotic natural enemies an effective way of controlling invasive plants? Trends Ecol Evol 22:447–453. doi:10.1016/j.tree.2007.03.003

    Article  PubMed  Google Scholar 

  • Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302. doi:10.1126/science.277.5330.1300

    Article  CAS  Google Scholar 

  • Torchin ME, Mitchell CE (2004) Parasites, pathogens, and invasions by plants and animals. Front Ecol Environ 2:183–190

    Article  Google Scholar 

  • Wang BS, Wang YJ, Liao WB, Zan QJ, Li MG, Peng SL, Han AC, Zhang WY, Chen DP (2004) The invasion ecology and management of alien weed Mikania micrantha H.B.K. Science Press, Beijing

    Google Scholar 

  • Weis AE, Hochberg ME (2000) The diverse effects of intraspecific competition on the selective advantage to resistance: a model and its predictions. Am Nat 156:276–292. doi:10.1086/303386

    Article  Google Scholar 

  • Wright MG, Hoffmann MP, Kuhar TP, Gardner J, Pitcher SA (2005) Evaluating risks of biological control introductions: a probabilistic risk-assessment approach. Biol Control 35:338–347. doi:10.1016/j.biocontrol.2005.02.002

    Article  Google Scholar 

  • Zan QJ, Wang BS, Wang YJ, Liao WB, Li MG, Xu HL (2002) The ecological evaluation on the controlling Mikania micrantha by Cuscuta campestris. Acta Sci Nat Univ Sunyatseni 41:60–63

    Google Scholar 

  • Zan QJ, Wang BS, Wang YJ, Zhang JL, Liao WB, Li MG (2003) The harm caused by Mikania micrantha and its control by Cuscuta campestris. J Plant Ecol 27:822–828

    Google Scholar 

  • Zedler JB, Kercher S (2004) Causes and consequences of invasive plants in wetlands: Opportunities, opportunists, and outcomes. Crit Rev Plant Sci 23:431–452. doi:10.1080/07352680490514673

    Article  Google Scholar 

  • Zhang LY, Ye WH, Cao HL, Feng HL (2004) Mikania micrantha H.B.K. in China—an overview. Weed Res 44:42–49

    Google Scholar 

Download references

Acknowledgements

We are grateful to Feihai Yu and Shumin Zhang for their help on experimental design, Susan M. Carstenn, Chris Edelstein and Sara Neugaard for polishing this manuscript, Qijie Zan and Aiping Wu for their assistance during field investigation. This study was supported by the program entitled Oversea Distinguished Scholars of the Chinese Academy of Sciences (58246G1215) and by the Grant from the National Natural Science Foundation of China (30770335).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-Ming He or Ming Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, H., He, WM., Liu, J. et al. Native Cuscuta campestris restrains exotic Mikania micrantha and enhances soil resources beneficial to natives in the invaded communities. Biol Invasions 11, 835–844 (2009). https://doi.org/10.1007/s10530-008-9297-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-008-9297-z

Keywords

Navigation