Skip to main content

Advertisement

Log in

GH2 family β-galactosidases evolution using degenerate oligonucleotide gene shuffling

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

To improve the biochemical characteristics of the GH2 family β-galactosidases using a family shuffling method based on degenerate oligonucleotide gene shuffling.

Results

Four β-galactosidase genes from the genus Alteromonas were divided into 14 gene segments, and each included the homologous sequence in the adjacent segments. The gene segments were regenerated into complete β-galactosidase genes and amplified by PCR. The obtained chimeric genes were cloned into a plasmid and screened for β-galactosidase activity. Approximately 320 positive clones were observed on the screening plate, of which nine sequenced genes were chimera. Additionally, the M22 and M250 mutants were expressed, purified, and characterized. The optimal temperature and substrate specificity of the recombinant M22 and M250 were consistent with those of the wild-type enzymes. The catalytic efficiency of recombinant M22 enzyme was higher than that of the wild-type enzymes, and the recombinant M250 displayed weak transglycosylation activity.

Conclusions

The chimeric genes of GH2 β-galactosidase were obtained using a controlled family shuffling that will provide an enzyme evolutionary method to obtain the β-galactosidases with excellent characteristics for laboratory and industrial purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adam AC, Rubio-Texeira M, Polaina J (2004) Lactose: the milk sugar from a biotechnological perspective. Crit Rev Food Sci Nutr 44:553–557

    Article  CAS  PubMed  Google Scholar 

  • Ansari SA, Satar R (2012) Recombinant β-galactosidases—past, present and future: a mini review. J Mol Catal B 81:1–6

    Article  CAS  Google Scholar 

  • Behrendorff JB, Johnston WA, Gillam EM (2014) Restriction enzyme-mediated DNA family shuffling. Methods Mol Biol 1179:175–187

    Article  PubMed  Google Scholar 

  • Bergquist PL, Reeves RA, Gibbs MD (2005) Degenerate oligonucleotide gene shuffling (DOGS) and random drift mutagenesis (RNDM): two complementary techniques for enzyme evolution. Biomol Eng 22:63–72

    Article  CAS  PubMed  Google Scholar 

  • Białkowska AM, Cieśliński H, Nowakowska KM, Kur J, Turkiewicz M (2009) A new beta-galactosidase with a low temperature optimum isolated from the Antarctic Arthrobacter sp. 20B: Gene cloning, purification and characterization. Arch Microbiol 191:825–835

    Article  PubMed  Google Scholar 

  • Crameri A, Raillard SA, Bermudez E, Stemmer WP (1998) DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391(6664):288–291

    Article  CAS  PubMed  Google Scholar 

  • Cieśliński H, Kur J, Białkowska A, Baran I, Makowski K, Turkiewicz M (2005) Cloning, expression, and purification of a recombinant cold-adapted beta-galactosidase from antarctic bacterium Pseudoalteromonas sp. 22b. Protein Expr Purif 39:27–34

    Article  PubMed  Google Scholar 

  • Gibbs MD, Nevalainen KM, Bergquist PL (2001) Degenerate oligonucleotide gene shuffling (DOGS): a method for enhancing the frequency of recombination with family shuffling. Gene 271(1):13–20

    Article  CAS  PubMed  Google Scholar 

  • Hosseini A, Mas J (2021) The β-galactosidase assay in perspective: critical thoughts for biosensor development. Anal Biochem 635:114446

    Article  CAS  PubMed  Google Scholar 

  • Hoyoux A, Jennes I, Dubois P, Genicot S, Dubail F, François JM, Baise E, Feller G, Gerday C (2001) Cold-adapted beta-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis. Appl Environ Microbiol 67:1529–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung MN, Xia Z, Hu NT, Lee BH (2001) Molecular and biochemical analysis of two beta-galactosidases from Bifidobacterium infantis HL96. Appl Environ Microb 67:4256–4263

    Article  CAS  Google Scholar 

  • Jacobson RH, Zhang XJ, DuBose RF, Matthews BW (1994) Three-dimensional structure of beta-galactosidase from E. coli. Nature 369(6483):761–766

    Article  CAS  PubMed  Google Scholar 

  • Juers DH, Heightman TD, Vasella A, McCarter JD, Mackenzie L, Withers SG, Matthews BW (2001) A structural view of the action of Escherichia coli (lacZ) beta-galactosidase. Biochemistry 40(49):14781–14794

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen F, Hansen OC, Stougaard P (2001) High-efficiency synthesis of oligosaccharides with a truncated beta-galactosidase from Bifidobacterium bifidum. Appl Microbiol Biotechnol 57:647–652

    Article  PubMed  Google Scholar 

  • Karasová-Lipovová P, Strnad H, Spiwok V, Maláa Š, Králová B, Russell NJ (2003) The cloning, purification and characterisation of a cold-active β-galactosidase from the psychrotolerant Antarctic bacterium Arthrobacter sp. C2–2. Enzym Microb Technol 33:836–844

    Article  Google Scholar 

  • Lu L, Guo L, Wang K, Liu Y, Xiao M (2020) β-Galactosidases: a great tool for synthesizing galactose-containing carbohydrates. Biotechnol Adv 39:107465

    Article  CAS  PubMed  Google Scholar 

  • Movahedpour A, Ahmadi N, Ghalamfarsa F, Ghesmati Z, Khalifeh M, Maleksabet A, Shabaninejad Z, Taheri-Anganeh M, Savardashtaki A (2022) β-Galactosidase: from its source and applications to its recombinant form. Biotechnol Appl Biochem 69(2):612–628

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Ikehata R, Myoda T, Miyaji T, Tomizuka N (2007) Overexpression and functional analysis of cold-active beta-galactosidase from Arthrobacter psychrolactophilus strain F2. Protein Expr Purif 54:295–299

    Article  CAS  PubMed  Google Scholar 

  • Oliveira C, Guimarães PM, Domingues L (2011) Recombinant microbial systems for improved β-galactosidase production and biotechnological applications. Biotechnol Adv 29(6):600–609

    Article  CAS  PubMed  Google Scholar 

  • Parikh MR, Matsumura I (2005) Site-saturation mutagenesis is more efficient than DNA shuffling for the directed evolution of beta-fucosidase from beta-galactosidase. J Mol Biol 352(3):621–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Placier G, Watzlawick H, Rabiller C, Mattes R (2009) Evolved beta-galactosidases from Geobacillus stearothermophilus with improved transgalactosylation yield for galacto-oligosaccharide production. Appl Environ Microbiol 75(19):6312–6321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rico-Díaz A, Ramírez-Escudero M, Vizoso-Vázquez Á, Cerdán ME, Becerra M, Sanz-Aparicio J (2017a) Structural features of Aspergillus niger β-galactosidase define its activity against glycoside linkages. FEBS J 284(12):1815–1829

    Article  PubMed  Google Scholar 

  • Rico-Díaz A, Álvarez-Cao ME, Escuder-Rodríguez JJ, González-Siso MI, Cerdán ME, Becerra M (2017b) Rational mutagenesis by engineering disulphide bonds improves Kluyveromyces lactis beta-galactosidase for high-temperature industrial applications. Sci Rep 7:45535

    Article  PubMed  PubMed Central  Google Scholar 

  • Rutkiewicz-Krotewicz M, Pietrzyk-Brzezinska AJ, Sekula B, Cieśliński H, Wierzbicka-Woś A, Kur J, Bujacz A (2016) Structural studies of a cold-adapted dimeric β-D-galactosidase from Paracoccus sp. 32d. Acta Crystallogr D 72(9):1049–1061

    Article  CAS  Google Scholar 

  • Rutkiewicz-Krotewicz M, Pietrzyk-Brzezinska A, Wanarska M, Cieslinski H, Bujacz A (2018) In situ random microseeding and streak seeding used for growth of crystals of cold-adapted β-D-galactosidases: crystal structure of DG from Arthrobacter sp. 32Cb. Crystals 8:13

    Article  Google Scholar 

  • Saqib S, Akram A, Halim SA, Tassaduq R (2017) Sources of β-galactosidase and its applications in food industry. 3 Biotech 7(1):79

    Article  PubMed  PubMed Central  Google Scholar 

  • Skálová T, Dohnálek J, Spiwok V, Lipovová P, Vondrácková E, Petroková H, Dusková J, Strnad H, Králová B, Hasek J (2005) Cold-active β-galactosidase from Arthrobacter sp. C2–2 forms compact 660 kDa hexamers: crystal structure at 19 Å resolution. J Mol Biol 353(2):282–294

    Article  PubMed  Google Scholar 

  • Splechtna B, Nguyen TH, Steinbock M, Kulbe KD, Lorenz W, Haltrich D (2006) Production of prebiotic galacto-oligosaccharides from lactose using beta-galactosidases from Lactobacillus reuteri. J Agric Food Chem 54:4999–5006

    Article  CAS  PubMed  Google Scholar 

  • Stemmer WP (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370(6488):389–391

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Yao C, Li Y, Wang W, Hao J, Yu Y (2022) A novel salt-tolerant GH42 β-galactosidase with transglycosylation activity from deep-sea metagenome. World J Microbiol Biotechnol 38:154

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Yao C, Wang W, Zhuang Z, Liu J, Dai F, Hao J (2018) Cloning, expression and characterization of a novel cold-adapted β-galactosidase from the deep-sea Bacterium Alteromonas sp. ML52. Mar Drugs 16(12):469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talens-Perales D, Górska A, Huson DH, Polaina J, Marín-Navarro J (2016) Analysis of domain architecture and phylogenetics of family 2 glycoside hydrolases (GH2). PLoS ONE 11(12):e0168035

    Article  PubMed  PubMed Central  Google Scholar 

  • Uchil PD, Nagarajan A, Kumar P (2017) β-Galactosidase. Cold Spring Harb Protoc 10:6198

    Google Scholar 

  • da Silva V, Amatto I, Gonsales da Rosa-Garzon N, de Oliveira A, Simões F, Santiago F, da Silva P, Leite N, Raspante Martins J, Cabral H (2022) Enzyme engineering and its industrial applications. Biotechnol Appl Biochem 69(2):389–409

    Article  Google Scholar 

  • Wierzbicka-Woś A, Cieśliński H, Wanarska M, Kozłowska-Tylingo K, Hildebrandt P, Kur J (2011) A novel cold-active β-D-galactosidase from the Paracoccus sp. 32d—gene cloning, purification and characterization. Microb Cell Fact 10:108

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Yuan S, Chen S, Wu D, Chen J, Wu J (2013) Enhancing the production of galacto-oligosaccharides by mutagenesis of Sulfolobus solfataricus β-galactosidase. Food Chem 138(2–3):1588–1595

    Article  CAS  PubMed  Google Scholar 

  • Xiong AS, Peng RH, Zhuang J, Liu JG et al (2007a) Directed evolution of β-galactosidase from Escherichia coli into β-glucuronidase. J Biochem Mol Biol 40(3):419–425

    CAS  PubMed  Google Scholar 

  • Xiong AS, Peng RH, Zhuang J, Li X, Xue Y, Liu JG, Gao F, Cai B, Chen JM, Yao QH (2007b) Directed evolution of a β-galactosidase from Pyrococcus woesei resulting in increased thermostable beta-glucuronidase activity. Appl Microbiol Biotechnol 77(3):569–578

    Article  CAS  PubMed  Google Scholar 

  • Yao C, Sun J, Wang W, Zhuang Z, Liu J, Hao J (2019) A novel cold-adapted β-galactosidase from Alteromonas sp. ML117 cleaves milk lactose effectively at low temperature. Process Biochem 82:94–101

    Article  CAS  Google Scholar 

  • Zeymer C, Hilvert D (2018) Directed evolution of protein catalysts. Annu Rev Biochem 87:131–157

    Article  CAS  PubMed  Google Scholar 

  • Zhang JH, Dawes G, Stemmer WP (1997) Directed evolution of a fucosidase from a galactosidase by DNA shuffling and screening. Proc Natl Acad Sci USA 94(9):4504–4509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Geary T, Simpson BK (2019) Genetically modified food enzymes: a review. Curr Opin Food Sci 25:14–18

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by National Natural Science Foundation of China (31900035), Central Public-interest Scientific Institution Basal Research Fund, CAFS (NO.2020TD67), and Qingdao National Laboratory for Marine Science and Technology Shandong Special Fund (2022QNLM030003-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Hao.

Ethics declarations

Conflict of interest

All authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1577 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Wang, W. & Hao, J. GH2 family β-galactosidases evolution using degenerate oligonucleotide gene shuffling. Biotechnol Lett 45, 655–665 (2023). https://doi.org/10.1007/s10529-023-03368-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-023-03368-w

Keywords

Navigation