Skip to main content

Advertisement

Log in

Switching the secondary and natural activity of Nitrilase from Acidovorax facilis 72 W for the efficient production of 2-picolinamide

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

Catalytic promiscuity, or the ability to catalyze a secondary reaction, provides new opportunities for industrial biocatalysis by expanding the range of biocatalytic reactions. Some nitrilases converting nitriles to amides, referred to as the secondary activity, show great potential for amides production. And our goal was exploiting the amide-forming potential of nitrilases.

Results

In this study, we characterized and altered the secondary activity of nitrilase from Acidovorax facilis 72 W (Nit72W) towards different substrates. We increased the secondary activity of Nit72W towards 2-cyanopyridine by 196-fold and created activity toward benzonitrile and p-nitrophenylacetonitrile by modifying the active pocket. Surprisingly, the best mutant, W188M, completely converted 250 mM 2-cyanopyridine to more than 98% 2-picolinamide in 12 h with a specific activity of 90 U/mg and showed potential for industrial applications.

Conclusions

Nit72W was modified to increase its secondary activity for the amides production, especially 2-picolinamide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Babtie A, Tokuriki N, Hollfelder F (2010) What makes an enzyme promiscuous? Curr Opin Chem Biol 14:200–207

    Article  CAS  Google Scholar 

  • Case DA et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  CAS  Google Scholar 

  • Casnati A et al (2005) Calixarene-based picolinamide extractants for selective An/Ln separation from radioactive waste. Eur J Org Chem 2005:2338–2348

    Article  Google Scholar 

  • Devamani T et al (2016) Catalytic promiscuity of ancestral esterases and hydroxynitrile lyases. J Am Chem Soc 138:1046–1056

    Article  CAS  Google Scholar 

  • Devine PN, Howard RM, Kumar R, Thompson MP, Truppo MD, Turner NJ (2018) Extending the application of biocatalysis to meet the challenges of drug development. Nat Rev Chem 2:409–421

    Article  Google Scholar 

  • Fernandes BCM et al (2006) Nitrile hydratase activity of a recombinant nitrilase. Adv Synth Catal 348:2597–2603

    Article  CAS  Google Scholar 

  • Godin AM et al (2011) Antinociceptive and anti-inflammatory activities of nicotinamide and its isomers in different experimental models. Pharmacol Biochem Be 99:782–788

    Article  CAS  Google Scholar 

  • Gong JS et al (2016) Engineering of a fungal nitrilase for improving catalytic activity and reducing by-product formation in the absence of structural information. Catal Sci Technol 6:4134–4141

    Article  CAS  Google Scholar 

  • Gutmann A, Nidetzky B (2016) Unlocking the potential of leloir glycosyltransferases for applied biocatalysis: Efficient synthesis of uridine 5′-diphosphate-glucose by sucrose synthase. Adv Synth Catal 358:3600–3609

    Article  CAS  Google Scholar 

  • Humble MS, Berglund P (2011) Biocatalytic Promiscuity. Eur. J Org Chem 2011:3391–3401

    CAS  Google Scholar 

  • Hur S, Bruice TC (2003) The near attack conformation approach to the study of the chorismate to prephenate reaction. Proc Natl Acad Sci USA 100:12015–12020

    Article  CAS  Google Scholar 

  • Jiang S, Zhang L, Yao Z, Gao B, Wang H, Mao X, Wei D (2017) Switching a nitrilase from Syechocystis sp. PCC6803 to a nitrile hydratase by rationally regulating reaction pathways. Catal Sci Technol 7:1122–1128

    Article  CAS  Google Scholar 

  • Kawabata T, Ogino T, Mori M, Awai M (1992) Effects of nicotinamide and its isomers on iron-induced renal damage. Acta Pathol Jpn 42:469–475

    CAS  PubMed  Google Scholar 

  • Kiziak C, Klein J, Stolz A (2007) Influence of different carboxy-terminal mutations on the substrate-, reaction- and enantiospecificity of the arylacetonitrilase from Pseudomonas fluorescens EBC191. Protein Eng Des Sel 20:385–396

    Article  CAS  Google Scholar 

  • Kiziak C, Stolz A (2009) Identification of amino acid residues responsible for the enantioselectivity and amide formation capacity of the Arylacetonitrilase from Pseudomonas fluorescens EBC191. Appl Environ Microbiol 75:5592–5599

    Article  CAS  Google Scholar 

  • Liang C et al (2016) Engineering a carbohydrate-processing transglycosidase into glycosyltransferase for natural product glycodiversification. Sci Rep 6:21051

    Article  CAS  Google Scholar 

  • Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C (2015) ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J Chem Theory Comput 11:3696–3713

    Article  CAS  Google Scholar 

  • Martinkova L, Kren V (2010) Biotransformations with nitrilases. Curr Opin Chem Biol 14:130–137

    Article  CAS  Google Scholar 

  • Nedrud DM, Lin H, Lopez G, Padhi SK, Legatt GA, Kazlauskas RJ (2014) Uncovering divergent evolution of alpha/beta-hydrolases: a surprising residue substitution needed to convert Hevea brasiliensis hydroxynitrile lyase into an esterase. Chem Sci 5:4265–4277

    Article  CAS  Google Scholar 

  • Ogata S, Takeuchi M, Teradaira S, Yamamoto N, Iwata K, Okumura K, Taguchi H (2002) Radical Scavenging Activities of Niacin-Related Compounds. Biosci Biotech Bioch 66:641–645

    Article  CAS  Google Scholar 

  • Philpott HK, Thomas PJ, Tew D, Fuerst DE, Lovelock SL (2018) A versatile biosynthetic approach to amide bond formation. Green Chem 20:3426–3431

    Article  CAS  Google Scholar 

  • Schmidt S et al (2015) An enzyme cascade synthesis of epsilon-caprolactone and its oligomers. Angew Chem Int Ed 54:2784–2787

    Article  CAS  Google Scholar 

  • Singla P, Bhardwaj RD (2019) Enzyme promiscuity – A light on the “darker” side of enzyme specificity. Biocatal Biotransfor 38:81–92

    Article  Google Scholar 

  • Sosedov O, Baum S, Burger S, Matzer K, Kiziak C, Stolz A (2010) Construction and application of variants of the Pseudomonas fluorescens EBC191 arylacetonitrilase for increased production of acids or amides. Appl Environ Microbiol 76:3668–3674

    Article  CAS  Google Scholar 

  • Sosedov O, Stolz A (2014) Random mutagenesis of the arylacetonitrilase from Pseudomonas fluorescens EBC191 and identification of variants, which form increased amounts of mandeloamide from mandelonitrile. Appl Microbiol Biotechnol 98:1595–1607

    Article  CAS  Google Scholar 

  • Sosedov O, Stolz A (2015) Improvement of the amides forming capacity of the arylacetonitrilase from Pseudomonas fluorescens EBC191 by site-directed mutagenesis. Appl Microbiol Biotechnol 99:2623–2635

    Article  CAS  Google Scholar 

  • Thuku RN, Brady D, Benedik MJ, Sewell BT (2009) Microbial nitrilases: versatile, spiral forming, industrial enzymes. J Appl Microbiol 106:703–727

    Article  CAS  Google Scholar 

  • Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  • Yamamoto H, Okamoto H (1980) Protection by picolinamide, a novel inhibitor of poly (ADP-ribose) synthetase, against both streptozotocin-induced depression of proinsulin synthesis and reduction of NAD content in pancreatic islets. Biochem Bioph Res Co 95:474–481

    Article  CAS  Google Scholar 

  • Zhang LJ, Yin B, Wang C, Jiang SQ, Wang HL, Yuan YA, Wei DZ (2014) Structural insights into enzymatic activity and substrate specificity determination by a single amino acid in nitrilase from Syechocystis sp PCC6803. J Struct Biol 188:93–101

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the China Postdoctoral Science Foundation (No. 2017M621390), the Fundamental Research Funds for the Central Universities (No. 222201814037), and National Natural Science Foundation of China (No. 21676090).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hualei Wang or Dongzhi Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Jiang, S., Sun, Y. et al. Switching the secondary and natural activity of Nitrilase from Acidovorax facilis 72 W for the efficient production of 2-picolinamide. Biotechnol Lett 43, 1617–1624 (2021). https://doi.org/10.1007/s10529-021-03137-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-021-03137-7

Keywords

Navigation