Skip to main content
Log in

Biotransformation of androst-4-ene-3,17-dione and nandrolone decanoate by genera of Aspergillus and Fusarium

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The ability of five fungal species belonging to two genera of Aspergillus and Fusarium has been examined in the microbial transformation of androst-4-ene-3, 17-dione (AD). Furthermore, the biotransformation of nandrolone decanoate (2) by F. fujikuroi has been studied. AD (1) was converted by cultures of Aspergillus sp. PTCC 5266 to form 11α-hydroxy-AD (3) as the only product, with a yield of 86% in 3 days. Moreover, two hydroxylated metabolites 11α-hydroxy-AD (3, 65%) and 7β-hydroxy-AD (4; 18%) were isolated in biotransformation of AD by A. nidulans. On the other hand, it was metabolized by F. oxysporum to produce 14α-hydroxy-AD (5; 38%) and testosterone (6; 12%). Microbial transformation of AD by F. solani led to the production of 11α-hydroxy-AD (3; 54%) and testosterone (6; 14%). AD was reduced at the 17-position by F. fujikuroi to produce testosterone in the yield of 42%. Finally, nandrolone decanoate was transformed by F. fujikuroi via hydrolysis and oxidation at the 17-position to produce two metabolites namely 17β-hydroxyestr-4-en-3-one (7, 25.4%) and estr-4-en-3,17-dione (8, 33%), respectively. The all metabolites were purified and subsequently identified based on their spectra data analysis and comparing them to the literature data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abourashed E, Clark A, Hufford C (1999) Microbial models of mammalian metabolism of xenobiotics: an updated review. Curr Med Chem 6:359–374

    CAS  PubMed  Google Scholar 

  • Al-Aboudi A, Kana'an BM, Zarga MA, Bano S, Atiatul W, Javed K, Choudhary MI (2017) Fungal biotransformation of diuretic and antihypertensive drug spironolactone with Gibberella fujikuroi, Curvularia lunata, Fusarium lini, and Aspergillus alliaceus. Steroids 128:15–22

    Article  CAS  Google Scholar 

  • Andryushina VA, Voishvillo NE, Druzhinina AV, Stytsenko TS, Yaderets VV, Petrosyan MA, Zeinalov OA (2013) 14α -Hydroxylation of steroids by mycelium of the mold fungus Curvularia lunata (VKPM F-981) to produce precursors for synthesizing new steroidal drugs. Pharm Chem J 47:103–108

    Article  CAS  Google Scholar 

  • Arabi H, Tabatabaei Yazdi M, Faramarzi MA (2010) Influence of whole microalgal cell immobilization and organic solvent on the bioconversion of androst-4-en-3,17-dione to testosterone by Nostoc muscorum. J Mol Catal B: Enzym 62:213–217

    Article  CAS  Google Scholar 

  • Basso AV, Nicotra VE, Parra AS, MartÃnez A, Fernandez-Vivas A (2016) Biotransformation of salpichrolides A, C, and G by three filamentous fungi. J Nat Prod 79:1658–1667

    Article  CAS  Google Scholar 

  • Baydoun E, Karam M, Wahab A, Khan MS, Ahmad MS, Samreen SC, Abdel-Massih R, Choudhary MI (2014) Microbial transformation of nandrolone with Cunninghamella echinulata and Cunninghamella blakesleeana and evaluation of leishmaniacidal activity of transformed products. Steroids 88:95–100

    Article  CAS  Google Scholar 

  • Bibby M, Double J, Mughal M (1981) Effects of nandrolone decanoate on the toxicity and anti-tumour action of CCNU and FU in murine tumours. Br J cancer 44:572–577

    Article  CAS  Google Scholar 

  • Choudhary MI, Sultan S, Khan MTH, Yasin A, Shaheen F, Rahman AU (2004) Biotransformation of (+)-androst-4-ene-3,17-dione. Nat Prod Res 18:529–535

    Article  CAS  Google Scholar 

  • Donova MV, Egorova OV (2012) Microbial steroid transformations: current state and prospects. Appl Microbiol Biot 94:1423–1447

    Article  CAS  Google Scholar 

  • Faramarzi MA, Badiee M, Tabatabaei Yazdi M, Amini M, Torshabi M (2008) Formation of hydroxysteroid derivatives from androst-4-en-3,17-dione by the filamentous fungus Mucor racemosus. J Mol Catal B: Enzym 50:7–12

    Article  CAS  Google Scholar 

  • Fernandes P, Cruz A, Angelova B, Pinheiro HM, Cabral JMS (2003) Microbial conversion of steroid compounds: recent developments. Enzym Microb Tech 32:688–705

    Article  CAS  Google Scholar 

  • Ghasemi S, Mohajeri M, Habibi Z (2014a) Biotransformation of testosterone and testosterone heptanoate by four filamentous fungi. Steroids 92:7–12

    Article  CAS  Google Scholar 

  • Ghasemi S, Kheyrabadi R, Habibi Z (2014b) Microbial transformation of hydrocortisone by two fungal species Fusarium fujikuroi PTCC 5144 and Rhizomucor pusillus PTCC 5134. Biocatal Biotransform 32:168–172

    Article  CAS  Google Scholar 

  • Heidary M, Habibi Z (2016) Microbial transformation of androst-4-ene-3,17-dione by three fungal species Absidia griseolla var. igachii, Circinella muscae and Trichoderma virens. J Mol Catal B Enzym 126:32–36

    Article  CAS  Google Scholar 

  • Holland HL (1999) Recent advances in applied and mechanistic aspects of the enzymatic hydroxylation of steroids by whole-cell biocatalyst. Steroids 64:178–186

    Article  CAS  Google Scholar 

  • Hu S, Genain G, Azerad R (1995) Microbial transformation of steroids: contribution to 14α-hydroxylations. Steroids 60:337–352

    Article  CAS  Google Scholar 

  • Iqbal Choudhary M, Adnan S, Shah A, Atta Ur R (2008) Microbial oxidation of anabolic steroids. Nat Prod Res 22:1289–1296

    Article  CAS  Google Scholar 

  • Janeczko T, Dmochowska-Gladysz J, Kostrzewa-Suslow E, Bialonska A, Ciunik Z (2009) Biotransformations of steroid compounds by Chaetomium sp. KCH 6651. Steroids 74:657–661

    Article  CAS  Google Scholar 

  • Kalbasi A, Faramarzi MA, Hejazi MS, Jahandar H, Amini M, Jalali SM (2009) 14α-hydroxylation of androst-4-en-3, 17-dione by the whole cells of cyanobacterium Nostoc piscinale. Biotechnol 8:370–374

    Article  CAS  Google Scholar 

  • Kolet SP, Niloferjahan S, Haldar S, Gonnade R, Thulasiram HV (2013) Biocatalyst mediated production of 6b,11a-dihydroxy derivatives of 4-ene-3-one steroids. Steroids 78:1152–1158

    Article  CAS  Google Scholar 

  • Kollerov V, Shutov A, Kazantsev A, Donova M (2020) Biotransformation of androstenedione and androstadienedione by selected Ascomycota and Zygomycota fungal strains. Phytochemistry 169:112160–112168

    Article  CAS  Google Scholar 

  • Koshimura M, Utsukihara T, Hara A, Mizobuchi S, Horiuchi CA, Kuniyoshi M (2010) Hydroxylation of steroid compounds by Gelasinospora retispora. J Mol Catal B: Enzym 62:72–77

    Article  Google Scholar 

  • Li J, Tang W, Ren D, Xu J, Yang Z (2019) Iridium-catalysed highly selective reduction-elimination of steroidal 4-en-3-ones to 3, 5-dienes in water. Green Chem 21:2088–2094

    Article  CAS  Google Scholar 

  • Malaviya A, Gomes J (2008) Androstenedione production by biotransformation of phytosterols. Bioresour Technol 67:25–6737

    Google Scholar 

  • Nassiri-Koopaei N, Faramarzi MA (2015) Recent developments in the fungal transformation of steroids. Biocatal Biotransform 33:1–28

    Article  CAS  Google Scholar 

  • Parshikov IA, Sutherland JB (2015) Biotransformation of steroids and flavonoids by cultures of Aspergillus niger. Appl Biochem Biotechnol 176:903–923

    Article  CAS  Google Scholar 

  • Sultana N (2018) Microbial biotransformation of bioactive and clinically useful steroids and some salient features of steroids and biotransformation. Steroids 136:76–92

    Article  CAS  Google Scholar 

  • Swizdor A, Panek A, Milecka-Tronina N (2017) Hydroxylative activity of Aspergillus niger towards androst-4-ene and androst-5-ene steroids. Steroids 126:101–106

    Article  CAS  Google Scholar 

  • Wang Y, Xiang L, Huang Y, Yi X, He X (2019) Microbial transformation of laxogenin by the fungus Syncephalastrum racemosum. Tetrahedron 75:1440–1449

    Article  CAS  Google Scholar 

  • Wilds AL, Nelson NA (1953) The facile synthesis of 19-nortestosterone and 19-norandrostenedione from estrone. J Chem Soc Chem 75:5366–5369

    Article  CAS  Google Scholar 

  • Xiong Z, Wei Q, Chen H, Chen S, Xu W, Qiua G, Liang S, Hu X (2006) Microbial transformation of androst-4-ene-3,17-dione by Beauveria bassiana. Steroids 71:979–983

    Article  CAS  Google Scholar 

  • Yazdi MT, Amani A, Faramarzi MA, Amini M, Shafiee A, Fathabad EG (2005) Nandrolone decanoate transformation by Neurospora crassa. Pharm Biol 43:630–635

    Article  Google Scholar 

  • Yazdi MT, Zanjanian SM, Faramarzi MA, Amini M, Amani A, Abdi K (2006) Microbial transformation of nandrolone decanoate by Acremonium strictum. Arch Pharm Chem Life Sci 339:473–476

    Article  CAS  Google Scholar 

  • Ye M, Guo D (2005) Substrate specificity for the 12 beta-hydroxylation of bufadienolides by Alternaria alternate. J Biotech 117:253–262

    Article  CAS  Google Scholar 

  • Zoghi M, Gandomkar S, Habibi Z (2019) Biotransformation of progesterone and testosterone enanthate by Circinella muscae. Steroids 151:108446

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Research Council of Shahid Beheshti University, Tehran, Iran and Islamic Azad University of Ilam, Iran for which the authors are thankful.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saba Ghasemi or Zohreh Habibi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2680 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidary, M., Ghasemi, S., Habibi, Z. et al. Biotransformation of androst-4-ene-3,17-dione and nandrolone decanoate by genera of Aspergillus and Fusarium. Biotechnol Lett 42, 1767–1775 (2020). https://doi.org/10.1007/s10529-020-02902-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-020-02902-4

Keywords

Navigation