Skip to main content

Advertisement

Log in

Kinetics and thermodynamics of lipase catalysed synthesis of propyl caprate

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objective

To investigate kinetics and thermodynamics of lipase-catalyzed esterification of capric acid with 1-propyl alcohol in a solvent-free system for synthesis of propyl caprate.

Results

The capric acid conversion of 83.82% is achieved at temperature 60 °C, speed of agitation 300 rpm, molar ratio acid:alcohol 1:3, enzyme loading 2% (w/w) and molecular sieves loading 5% (w/w). The activation energy (Ea) for the reaction was determined as 37.79 kJ mol−1. Furthermore, enthalpy (ΔH), entropy (ΔS) and Gibbs free energy (ΔG) values were found out to be + 90.45 kJ mol−1, + 278.99 J mol−1 K−1 and − 2.35 kJ mol−1 respectively.

Conclusions

The results showed that the lipase-catalyzed esterification exhibits an ordered bi–bi mechanism with capric acid inhibiting the reaction and forming the dead-end complex with the lipase. Under the given set of reaction conditions, the lipase catalysed esterification reaction was anticipated to be spontaneous, referring to the value of the Gibbs free energy change (ΔG). Moreover, the esterification process was found to be endothermic, based on the values of enthalpy (ΔH) and entropy (ΔS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Al-zuhair S (2005) Production of biodiesel by lipase-catalyzed transesterification of vegetable oils: a kinetics study. Biotechnol Prog 21:1442–1448

    Article  CAS  PubMed  Google Scholar 

  • Arsan J, Parkin KL (2000) Selectivity of Candida antarctica B lipase toward fatty acid and (Iso) propanol substrates in esterification reactions in organic media. J Agric Food Chem 48:3738–3743

    Article  CAS  PubMed  Google Scholar 

  • Awang R, Basri M, Ahmad S, Salleh A (2004) Lipase-catalyzed esterification of palm-based 9,10-dihydroxystearic acid and 1-octanol in hexane—a kinetic study. Biotechnol Lett 26:11–14

    Article  CAS  PubMed  Google Scholar 

  • Badgujar KC, Bhanage BM (2014) Application of lipase immobilized on the biocompatible ternary blend polymer matrix for synthesis of citronellyl acetate in non-aqueous media: kinetic modelling study. Enzyme Microb Technol 57:16–25

    Article  CAS  PubMed  Google Scholar 

  • Bansode SR, Hardikar MA, Rathod VK (2017) Evaluation of reaction parameters and kinetic modelling for Novozym 435 catalysed synthesis of isoamyl butyrate. J Chem Technol Biotechnol 92(6):1306–1314

    Article  CAS  Google Scholar 

  • Chulalaksananukul W, Condort JS, Delorme P, Willemot RM (1990) Kinetic study of esterification by immobilized lipase in n-hexane. FEBS Lett 276:181–184

    Article  CAS  PubMed  Google Scholar 

  • De Barros DPC, Pinto F, Fonseca LP et al (2014) Enzymatic kinetic model for the esterification of ethyl caproate for reaction optimization. J Mol Catal B 101:16–22

    Article  CAS  Google Scholar 

  • De Castro HF, De Oliveira PC, Pereira EB, Brazil LÐSPÐ (1997) Evaluation of different approaches for lipase catalysed synthesis of citronellyl acetate. Biotechnol Lett 19:229–232

    Article  CAS  Google Scholar 

  • Garcia T, Sanchez N, Martinez M, Aracil J (1999) Enzymatic synthesis of fatty esters part I. Kinetic approach☆. Enzyme Microb Technol 25:584–590

    Article  CAS  Google Scholar 

  • Gawas SD, Jadhav SV, Rathod VK (2016) Solvent free lipase catalysed synthesis of ethyl laurate: optimization and kinetic studies. Appl Biochem Biotechnol 180:1428–1445

    Article  CAS  PubMed  Google Scholar 

  • Gharat N, Rathod VK (2013) Enzyme catalyzed transesterification of waste cooking oil with dimethyl carbonate. J Mol Catal B 88:36–40

    Article  CAS  Google Scholar 

  • Guvenc Afife, Kapucu NMU (2002) The production of isoamyl acetate using immobilized lipases in a solvent-free system. Process Biochem 38:379–386

    Article  CAS  Google Scholar 

  • Higuchi WI, Patel FA (2018) Composition comprising bioreversible derivatives of Hydroxy n-substituted-2-aminotetralins, dosage forms and related methods.pdf. US9956201 B2

  • Ho J, Bong S, Woo S et al (2011) Biodiesel production by a mixture of Candida rugosa and Rhizopus oryzae lipases using a supercritical carbon dioxide process. Bioresour Technol 102:2105–2108

    Article  CAS  Google Scholar 

  • Jaiswal KS, Rathod VK (2018) Acoustic cavitation promoted lipase catalysed synthesis of isobutyl propionate in solvent free system: optimization and kinetic studies. Ultrason Sonochem 40:727–735

    Article  CAS  PubMed  Google Scholar 

  • Jensen RG, Galluzzo DR, Bush VJ (1990) Selectivity is an important characteristic of lipases (Acylglycerol hydrolases). Biocatalysis 3:307–316

    Article  CAS  Google Scholar 

  • Karabulut I, Durmaz G, Hayaloglu AA (2009) Fatty acid selectivity of lipases during acidolysis reaction between oleic acid and monoacid triacylglycerols. J Agric Food Chem 57:10466–10470

    Article  CAS  PubMed  Google Scholar 

  • Lanjekar K, Rathod VK (2013) Utilization of glycerol for the production of glycerol carbonate through greener route. J Environ Chem Eng 1:1231–1236

    Article  CAS  Google Scholar 

  • Marangoni AG (2003) Enzyme kinetics a modern approach. Wiley, New Jersey

    Google Scholar 

  • Matsunaga S, Takahashi A, Hayakawa H (2018) Curing accelerator for oxidative polymerization-type unsaturated resin, printing ink and coating material.pdf. US2016/0152867 A1

  • Melo LLMM, Pastore GM, Macedo GA (2005) Optimized synthesis of citronellyl flavour esters using free and immobilized lipase from Rhizopus sp. Process Biochem 40:3181–3185

    Article  CAS  Google Scholar 

  • Mestri SD, Pai JS (1995) Effect of moisture on lipase catalysed esterification of Geraniol of palmarosa oil in non-aqueous system. Biotechnol Lett 17:459–460

    Article  CAS  Google Scholar 

  • Paiva AL, Balca VM, Malcata FX (2000) Kinetics and mechanisms of reactions catalyzed by immobilized lipases. Enzyme Microb Technol 27:187–204

    Article  CAS  PubMed  Google Scholar 

  • Paludo N, Alves JS, Altmann C et al (2015) The combined use of ultrasound and molecular sieves improves the synthesis of ethyl butyrate catalyzed by immobilized Thermomyces lanuginosus lipase. Ultrason Sonochem 22:89–94

    Article  CAS  PubMed  Google Scholar 

  • Pellis A, Comerford JW, Mane AJ et al (2018) Elucidating enzymatic polymerisations: chain-length selectivity of Candida antarctica lipase B towards various aliphatic diols and dicarboxylic acid diesters. Eur Polym J 106:79–84

    Article  CAS  Google Scholar 

  • Raza S, Fransson L, Hult K (2001) Enantioselectivity in Candida antarctica lipase B: a molecular dynamics study. Protein Sci 10:329–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro SS, Oliveira JRD, Porto AL (2012) Lipase-catalyzed kinetic resolution of (±)- mandelonitrile under conventional condition and microwave irradiation. J Braz Chem Soc 23:1395–1399

    Article  CAS  Google Scholar 

  • Segel IH (1993) Enzyme kinetics: behavior and analysis of rapid equilibrium and steady-state enzyme systems. Wiley, New York

    Google Scholar 

  • Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349:1289–1307

    Article  CAS  Google Scholar 

  • Shimotori Yasutaka, Hoshi MMT (2015) Combination of novozym 435-catalyzed enantioselective hydrolysis and amidation for the preparation of optically active δ-hexadecalactone. J Oleo Sci 64:561–575

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Modak J, Madras G (2002) Enzymatic synthesis of flavors in supercritical carbon dioxide. Ind Eng Chem Res 41:1940–1945

    Article  CAS  Google Scholar 

  • Tewari YB, Bunk DM (2001) Thermodynamics of the lipase-catalyzed esterification of glycerol and n -octanoic acid in organic solvents and in the neat reaction mixture. J Mol Catal B 15:135–145

    Article  CAS  Google Scholar 

  • Yahya ARM, Anderson WA, Moo-young M et al (1998) Ester synthesis in lipase- catalyzed reactions. Enzyme Microb Technol 23:438–450

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virendra K. Rathod.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parikh, D.T., Lanjekar, K.J. & Rathod, V.K. Kinetics and thermodynamics of lipase catalysed synthesis of propyl caprate. Biotechnol Lett 41, 1163–1175 (2019). https://doi.org/10.1007/s10529-019-02718-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-019-02718-x

Keywords

Navigation