Advertisement

Biotechnology Letters

, Volume 40, Issue 5, pp 745–753 | Cite as

New trends in aggregating tags for therapeutic protein purification

  • Xiaofeng Yang
  • Marco Pistolozzi
  • Zhanglin Lin
Review

Abstract

The rapid growth of the therapeutic protein market calls for more efficient purification methods. Various aggregating tags have recently emerged as simple, fast, cost-effective and column-free technologies for protein (and peptide) purification. In general, these column-free protein purification technologies involve the use of aggregating tags that induce the target protein into insoluble aggregates. These aggregates can be easily separated from soluble impurities and the target protein or peptide is then liberated by a cleavage process. This review summarizes the current state-of-the-art in using aggregating tags for protein purification. The methods are here categorized as follows: (1) tags that allow soluble expression of target protein in vivo and induce aggregation in vitro; (2) tags that induce soluble expression and self-assembling of target protein on insoluble biological polyester beads in vivo; (3) tags that induce formation of inactive aggregates in vivo; (4) tags that induce formation of active aggregates in vivo.

Keywords

Aggregating tags Cleavable tags Protein purification Therapeutic proteins 

Notes

Acknowledgement

This work was supported by a grant from Natural Science Foundation of Guangdong Province, China (2017A030311012) and China Postdoctoral Science Foundation (2017M612648).

References

  1. Agyei D, Ahmed I, Akram Z, Iqbal HMN, Danquah MK (2017) Protein and peptide biopharmaceuticals: an overview. Protein Peptide Lett 24:94–101CrossRefGoogle Scholar
  2. Amin A, Latif Z (2017) Cloning, expression, isotope labeling, and purification of transmembrane protein MerF from mercury resistant Enterobacter sp AZ-15 for NMR studies. Front Microbiol 8:1250CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baeshen MN, Al-Hejin AM, Bora RS, Ahmed MMM, Ramadan HAI, Saini KS, Baeshen NA, Redwan EM (2015) Production of biopharmaceuticals in E. coli: current scenario and future perspectives. J Microbiol Biotechnol 25:953–962CrossRefPubMedGoogle Scholar
  4. Banki MR, Wood DW (2005) Inteins and affinity resin substitutes for protein purification and scale up. Microb Cell Fact 4:32CrossRefPubMedPubMedCentralGoogle Scholar
  5. Banki MR, Gerngross TU, Wood DW (2005) Novel and economical purification of recombinant proteins: intein-mediated protein purification using in vivo polyhydroxybutyrate (PHB) matrix association. Protein Sci 14:1387–1395CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chawla N (2015) Recombinant therapeutic proteins market & pipeline analysis. https://www.kuickresearch.com/redirect.php?reporttitle=Recombinant-Therapeutic-Proteins-Market-%26-Pipeline-Analysis. Accessed 22 Jan 2018
  7. Du J, Rehm BHA (2017) Purification of target proteins from intracellular inclusions mediated by intein cleavable polyhydroxyalkanoate synthase fusions. Microb Cell Fact 16:184CrossRefPubMedPubMedCentralGoogle Scholar
  8. Hafizi A, Malboobi MA, Jalali-Javaran M, Maliga P, Alizadeh H (2017) Covalent-display of an active chimeric-recombinant tissue plasminogen activator on polyhydroxybutyrate granules surface. Biotechnol Lett 39:1683–1688CrossRefPubMedGoogle Scholar
  9. Hay ID, Du J, Reyes PR, Rehm BHA (2015) In vivo polyester immobilized sortase for tagless protein purification. Microb Cell Fact 14:190CrossRefPubMedPubMedCentralGoogle Scholar
  10. Ji S, Li W, Baloch AR, Wang M, Li H, Cao B, Zhang H (2017) Efficient biosynthesis of a cecropin A-melittin mutant in Bacillus subtilis WB700. Sci Rep 7:40587CrossRefPubMedPubMedCentralGoogle Scholar
  11. Jong WSP, Vikstrom D, Houben D, vanSaparoea HB, Gier JW, Luirink J (2017) Application of an E. coli signal sequence as a versatile inclusion body tag. Microb Cell Fact 16:50CrossRefPubMedPubMedCentralGoogle Scholar
  12. Kuddus MR, Yamano M, Rumi F, Kikukawa T, Demura M, Aizawa T (2017) Enhanced expression of cysteine-rich antimicrobial peptide snakin-1 in Escherichia coli using an aggregation-prone protein coexpression system. Biotechnol Prog 33:1520–1528CrossRefPubMedGoogle Scholar
  13. Li GY, Xiao ZZ, Lu HP, Li YY, Zhou XH, Tan X, Zhang XY, Xia XL, Sun HC (2016) A simple method for recombinant protein purification using self-assembling peptide-tagged tobacco etch virus protease. Protein Expr Purif 128:86–92CrossRefPubMedGoogle Scholar
  14. Lin Z, Zhao Q, Xing L, Zhou B, Wang X (2015) Aggregating tags for column-free protein purification. Biotechnol J 10:1877–1886CrossRefPubMedGoogle Scholar
  15. Madan B, Chaudhary G, Cramer SM, Chen W (2013) ELP-z and ELP-zz capturing scaffolds for the purification of immunoglobulins by affinity precipitation. J Biotechnol 163:10–16CrossRefPubMedGoogle Scholar
  16. Pane K, Durante L, Pizzo E, Varcamonti M et al (2016) Rational design of a carrier protein for the production of recombinant toxic peptides in E. coli. PLoS ONE 11:e0146552CrossRefPubMedPubMedCentralGoogle Scholar
  17. Parlane NA, Gupta SK, Rubio-Reyes P, Chen S, Gonzalez-Miro M, Wedlock DN, Rehm BHA (2017) Self-assembled protein-coated polyhydroxyalkanoate beads: properties and biomedical applications. ACS Biomater Sci Eng 3:3043–3057CrossRefGoogle Scholar
  18. Pina AS, Lowe CR, Roque ACA (2014) Challenges and opportunities in the purification of recombinant tagged proteins. Biotechnol Adv 32:366–381CrossRefPubMedGoogle Scholar
  19. Rodriguez V, Asenjo JA, Andrews BA (2014) Design and implementation of a high yield production system for recombinant expression of peptides. Microb Cell Fact 13:65CrossRefPubMedPubMedCentralGoogle Scholar
  20. Schindler S, Missbichler B, Walther C, Sponring M, Cserjan-Puschmann M, Auer B, Schneider R, Duerauer A (2016) Npro fusion technology: on-column complementation to improve efficiency in biopharmaceutical production. Protein Expr Purif 120:42–50CrossRefPubMedGoogle Scholar
  21. Sheth RD, Bhut BV, Jin M, Li Z, Chen W, Cramer SM (2014) Development of an ELP-Z based mAb affinity precipitation process using scaled-down filtration techniques. J Biotechnol 192:11–19CrossRefPubMedGoogle Scholar
  22. Sousa DA, Mulder KCL, Nobre KS, Parachin NS, Franco OL (2016) Production of a polar fish antimicrobial peptide in Escherichia coli using an ELP-intein tag. J Biotechnol 234:83–89CrossRefPubMedGoogle Scholar
  23. Swartz AR, Xu XK, Traylor SJ, Li ZJ, Chen W (2018) One-step affinity capture and precipitation for improved purification of an industrial monoclonal antibody using Z-ELP functionalized nanocages. Biotechnol Bioeng 115:423–432CrossRefPubMedGoogle Scholar
  24. Wu Q, Liu W, Xu B, Zhang X, Xia X, Sun H (2016) Single-step concentration and purification of adenoviruses by coxsackievirus-adenovirus receptor-binding capture and elastin-like polypeptide-mediated precipitation. Arch Virol 161:279–287CrossRefPubMedGoogle Scholar
  25. Xia W, Lu H, Li Y, Cao J, Zhou X, Zhang X, Xia X, Sun H (2017) Purification of chicken IgY by binding capture using elastin-like polypeptide-tagged immunoglobulin-binding domain of streptococcal protein G. Vet Immunol Immunopathol 192:13–19CrossRefPubMedGoogle Scholar
  26. Xing L, Wu W, Zhou B, Lin Z (2011) Streamlined protein expression and purification using cleavable self-aggregating tags. Microb Cell Fact 10:42CrossRefPubMedPubMedCentralGoogle Scholar
  27. Xu W, Zhao Q, Xing L, Lin Z (2016) Recombinant production of influenza hemagglutinin and HIV-1 GP120 antigenic peptides using a cleavable self-aggregating tag. Sci Rep 6:35430CrossRefPubMedPubMedCentralGoogle Scholar
  28. Zerfass C, Braukmann S, Nietzsche S, Hobe S, Paulsen H (2015) High yield recombinant production of a self-assembling polycationic peptide for silica biomineralization. Protein Expr Purif 108:1–8CrossRefPubMedGoogle Scholar
  29. Zhao Q, Xu W, Xing L, Lin Z (2016) Recombinant production of medium-to large-sized peptides in Escherichia coli using a cleavable self-aggregating tag. Microb Cell Fact 15:136CrossRefPubMedPubMedCentralGoogle Scholar
  30. Zhao Q, Zhou B, Gao X, Xing L, Wang X, Lin Z (2017) A cleavable self-assembling tag strategy for preparing proteins and peptides with an authentic N-terminus. Biotechnol J 12:1600656CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations