Skip to main content

Advertisement

Log in

The evolution of CRISPR/Cas9 and their cousins: hope or hype?

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

A Correction to this article was published on 07 October 2021

This article has been updated

Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system allows biologists to edit genomic DNA of any cell in precise and specific way, entailing great potential for crop improvement, drug development and gene therapy. The system involves a nuclease (Cas9) and a designed guide RNA that are involved in wide range of applications such as genome modification, transcriptional modulation, genomic loci marking and RNA tracking. The limitation of the technique, in view of resistance of thymidine-rich genome to Cas9 cleavage, has now been overcome by the use of Cpf1 nuclease. In this review, we present an overview of CRISPR nucleases (Cas9 or Cpf1) with particular emphasis on human genome modification and compare their advantages and limitations. Furthermore, we summarize some of the pros and cons of CRISPR technology particularly in human therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

References

  • Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, Shmakov S, Makarova KS, Semenova E, Minakhin L, Severinov K, Regev A, Lander ES, Koonin EV, Zhang F (2016) C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353:6299

    Google Scholar 

  • Ain QU, Chung JY, Kim YH (2015) Current and future delivery systems for engineered nucleases: ZFN, TALEN and REGN. J Control Release 205:120–127

    CAS  Google Scholar 

  • Anantharaman V, Makarova KS, Burroughs AM, Koonin EV, Aravind L (2013) Comprehensive analysis of the HEPN superfamily: identification of novel roles in intra-genomic conflicts, defense, pathogenesis and RNA processing. Biol Direct 8:15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anders C, Niewoehner O, Duerst A, Jinek M (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513:569–573

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baltes NJ, Gil-Humanes J, Cermark T, Atkins PA, Voytas DF (2014) DNA replicons for plant genome engineering. Plant Cell 26:151–163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baltimore D, Berg P, Botchan M, Carroll D, Charo RA, Church G, Corn JA, Daley JQ, Doudna JA, Fenner M, Greely ST, Jinek M, Martin GS, Penhoet E, Puck J, Sternberg SH, Weissman JS, Yamamoto KR (2015) A prudent path forward for genomic engineering and germline gene modification. Science 348:36–38

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineanu S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712

    CAS  PubMed  Google Scholar 

  • Bassett AR, Tibbit C, Ponting CP, Liu JL (2013) Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep 4:220–228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bolotin A, Quinquis B, Sorokin A, Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151:2551–2561

    CAS  PubMed  Google Scholar 

  • Bondey-Denomy J, Garcia B, Strum S, Du M, Rollins MF, Reyes YH, Wiedenheft B, Maxwell KL, Davidson AR (2015) Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins. Nature 526:136–139

    Google Scholar 

  • Bosely KS, Botchan M, Bredenoord AL, Carroll D, Charo RA, Charpentier E, Cohen R, Corn J, Doudna J, Feng G, Greely HT, Isasi R, Ji R, Kim JS, KnoppersELJ Badge RL, Martin GS, Moreno J, Naldini L, Pera M, Perry ACF, Venter JC, Zhang F, Zhou Q (2015) CRISPR germline engineering-the community speaks. Nat Biotechnol 33:478–486

    Google Scholar 

  • Bronus SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Dickman MJ, Makarova KS, Koonin EV (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–964

    Google Scholar 

  • Brooks C, Nekrasov V, Lippman ZB, Van Eck J (2014) Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol 166:1292–1297

    PubMed  PubMed Central  Google Scholar 

  • Burgess DJ (2016) Genome editing for lineage tracing. Science 17:435

    CAS  Google Scholar 

  • Callaway E (2016) Embryo editing gets green lights. Nature 530:18

    CAS  PubMed  Google Scholar 

  • Caplan AL, Parent B, Shen M, Plunkett C (2015) No time to waste-the ethical challenges created by CRISPR. EMBO Rep 16:1421–1426

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll D (2011) Genome engineering with zinc-finger nucleases. Genetics 188:773–782

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll D, Charo RA (2015) The social opportunities and challenges of genome editing. Geno Biol 16:242

    Google Scholar 

  • Carroll D, Van Eenennaam AL, Taylor JF, Seger J, Voytas DF (2016) Regulate genome-edited products, not genome editing itself. Nat Biotechnol 34:477–479

    PubMed  Google Scholar 

  • Chaudhary K, Pratap D, Sharma PK (2016) Transcription activator-like effector nucleases (TALENs): an efficient tool for plant genome editing. Eng Life Sci 16:330–337

    CAS  Google Scholar 

  • Chaudhary K, Chattopadhyay A, Pratap D (2018) Anti-CRISPR proteins: counterattack of phages on bacterial defense (CRISPR/Cas) system. J Cell Physiol 233:57–59

    CAS  PubMed  Google Scholar 

  • Chen X, Gonsalves MAFV (2016) Engineered viruses as genome editing devices. Mol Ther 24:447–457

    CAS  PubMed  Google Scholar 

  • Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, Park J, Blackburn EH, Weissman JS, Qi LS, Huang B (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155:1479–1491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiruvella KK, Liang Z, Wilson TE (2013) Repair of double-strand breaks by end joining. Cold Spring Harb Prespect Biol 5:a012757

    Google Scholar 

  • Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, Kim J (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 24:132–141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chylinski K, Makarova KS, Charpentier E, Koonin EV (2014) Classification and evolution of type II CRISPR-Cas system. Nucleic Acids Res 42:6091–6105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, LA Jiangw Maraffind, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cyranoski D (2015) Embryo editing divides scientists. Nature 519:272

    CAS  PubMed  Google Scholar 

  • Davis AJ, Chen DJ (2013) DNA double strand break repair via non-homologous end-joining. Transl Cancer Res 2:130–143

    CAS  PubMed  Google Scholar 

  • Daya S, Berns KI (2008) Gene therapy using adeno-associated virus vectors. Clin Microbial Rev 21:583–593

    CAS  Google Scholar 

  • Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dominguez AA, Lim WA, Qi LS (2016) Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol 5:5–15

    Google Scholar 

  • Dong D, Ren K, Qiu X, Zheng J, Guo M, Guan X, Liu H, Li N, Zhang B, Yang D, Ma I, Wang S, Dan W, Ma Y, Fan S, Wang J, Gao N, Huang Z (2016) The crystal structure of Cpf1 in complex with CRISPR RNA. Nature 532:522–526

    CAS  PubMed  Google Scholar 

  • Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096

    PubMed  Google Scholar 

  • East-Seletsky A, O’Connell MR, Knight SC (2016) Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 538:270–273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Endo M, Mikami M, Toki S (2015) Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant Cell Physiol 56:41–47

    CAS  PubMed  Google Scholar 

  • Friedland AE, Tzur YB, Esvelt KM, Colaiacovo MP, Church GM, Culorco JA (2013) Heritable genome editing in C.elegans via a CRISPR-Cas9 system. Nat Methods 10:741–743

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822–826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Sander JD, Reyon D, Cascio VM, Joung J (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32:279–284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF III (2013) ZFN, TALEN and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner MJ, Shallom SJ, Carlton JM, Salzberg Steven L, Nene V, Shoaibi A, Ciecko A, Lynn J, Rizzo M, Weaver B, Jarrahi B, Brenner M, Parvizi B, Tallon L, Moazzez A, Granger D, Fujii C, Hansen C, Pederson J, Feldblyum T, Peterson J, Suh B, Angiuoli S, Pertea M, Allen A, Selengut J, White O, Cummings LM, Smith HO, Adams MD, Venter JC, Carucci DJ, Hoffman SL, Fraser CM (2002) Sequence of Plasmodium falciparum chromosomes 2, 10, 11 and 14. Nature 419:531–534

    CAS  PubMed  Google Scholar 

  • Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Ginossar SN, Brandman O, Whitehed EH, Doudna JA, Lim WA, Scott SDA, Mikkelsen TS, Hecl D, Edert BL, Root DE, Waissman JS, Qi LS (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gori JL, Hsu PD, Maeder ML, Maeder ML, Shen S, Welstead GG, Bumcrot D (2015) Delivery and specificity of CRISPR/Cas9 genome editing technologies for human gene therapy. Hum Gene Ther 26:443–451

    CAS  PubMed  Google Scholar 

  • Gratz SJ, Cumming AM, Nguyen JN, Hamm DC, Donhuc LK, Harrison MM, Wildonager J, O’connor-Giles KM (2013) Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194:1029–1035

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto M, Takemoto T (2015) Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome editing. Sci Rep 5:11315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayden EC (2016) Tomorrow’s children. Nature 530:402–405

    Google Scholar 

  • Hilton IB, D’lppolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, Gersbach CA (2015) Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33:510–517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirano H, Gootenberg JS, Horii T, Abudayyeh OO, Kimura M, Hsu PD, Nakane T, Ishitani R, Hatada I, Zhang F, Nishimasu H, Nureki O (2016) Structure and engineering of Francisella novicida Cas9. Cell 164:950–961

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu PD, Scot DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F (2013) DNA-targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Weigel D, Beachy RN, Li J (2016) A proposed regulatory framework for genome-editing crops. Nat Genet 48:109–111

    CAS  PubMed  Google Scholar 

  • Hur JK, Kim K, Been KW, Baek G, Ye S, Hur JW, Ryu SM, Lee YS, Kim JS (2016) Targeted mutagenesis in mice by electroporation of Cpf1 ribonucleoproteins. Nat Biotechnol 34:807–808

    CAS  PubMed  Google Scholar 

  • Hwang WY, Fu Y, Reyon D, Marder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JRJ, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatise isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429–5433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 15:16

    PubMed  PubMed Central  Google Scholar 

  • Janson R, Embden JD, Gaastra W, Schouls LM (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43:1565–1575

    Google Scholar 

  • Jao LE, Wente SR, Chen W (2013) Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci 110:13904–13909

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang W, Zhou H, Bi H, Fromm M, Yong B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modifications in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, Anders C, Hauer M, Zhou K, Lin S, Kaplan M, Lavarone AT, Charpentier Nagales E, Doudna JA (2014) Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343:1247997

    PubMed  PubMed Central  Google Scholar 

  • Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14:49–55

    CAS  PubMed  Google Scholar 

  • Kabadi AM, Gersbach CA (2014) Engineering synthetic TALE and CRISPR/Cas9 transcription factors for gene expression. Methods 69:188–197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang X, He W, Huang Y, Yu Q, Chen Y, Gao X, Sun X, Fan Y (2016) Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing. J Assist Reprod Genet 33:581–588

    PubMed  PubMed Central  Google Scholar 

  • Kim H, Kim JS (2014) A guide to genome engineering with programmable nucleases. Nat Rev Genet 15:321–334

    CAS  PubMed  Google Scholar 

  • Kim D, Kim J, Hur JK (2016) Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat Biotechnol 34:863–868

    CAS  PubMed  Google Scholar 

  • Kleinstiver BP, Tsai SQ, Prew SM, Nguyen NT, Welch MM, Lopez JM, McCaw ZR, Aryee MJ, Joung JK (2016) Genome-wide specificites of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol 34:869–874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kotterman MA, Schaffer DV (2014) Engineered adeno-associated viruses for clinical gene therapy. Nat Rev Genet 15:445–451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamphire E, Urnov F, Haecker SE, Werner M, Smolenski J (2015) Don’t edit the human germ line. Nature 519:410–411

    Google Scholar 

  • Laufer BI, Singh SM (2015) Strategies for precision modulation of gene expression by epigenome editing: an overview. Epigenet Chromat 8:34

    Google Scholar 

  • Li D, Qiu Z, Shao Y, Chen Y, Guan Y, Liu M, Na G, Wang L, Lu X, Zha Y, Liu M (2013) Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol 31:681–683

    CAS  PubMed  Google Scholar 

  • Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, Lv J, Xie X, Chen Y, Li Y, Sun Y, Bai Y, Songyang Z, Ma W, Zhou C, Huang J (2015) CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Prot Cell 6:363–372

    CAS  Google Scholar 

  • Lieber MR (2010) The mechanism of double-strand break repairs by the non-homlogous DNA end-joining pathway. Annu Rev Biochem 79:181–211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Song Y, Liu D (1999) Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 6:1258–1266

    CAS  PubMed  Google Scholar 

  • Liu L, Li X, Wang J, Liu Liang, Wang Xueyan LiJiuyu, Wang Min, Chen Peng, Wang Maolu Yin Jiazhi LiGang Sheng Yanli (2017) Two distinct catalytic sites are responsible for C2c2 RNase activities. Cell 168:121–134. https://doi.org/10.1016/j.cell.2016.12.031

    Article  CAS  PubMed  Google Scholar 

  • Lozano-Duran R (2016) Geminivirus for biotechnology: the art of parasite taming. New Phytol 210:58–64

    CAS  PubMed  Google Scholar 

  • Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang ZF, Li H, Lin Y, Xie Y, Shen R, Wang SZ, Chen Y, Guo J, Chen L, Zhao X, Dong Z, Liu YG (2015) A robust CRISPR/Cas9 system for convinent, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8:1274–1284

    CAS  PubMed  Google Scholar 

  • Ma H, Tu LC, Naseri A, Huisman M, Zhang S, Grunwald D, Pederson T (2016) Multiplexed labelling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat Biotechnol 34:528–530

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mach J (2014) Geminivirus vectors deliver reagents for plant genome engineering. Plant Cell 26:2

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK (2013) CRISPR RNA-guided activation of endogenous human genes. Nat Methods 10:977–981

    CAS  PubMed  PubMed Central  Google Scholar 

  • Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJS, Barrangou R, Brouns JJ, Charpentier E, Haft DH, Horvarth P, Moineau S, Mojica FJM, Terns R, Terns MP, White MF, Yakunin AF, Garrett RA, vander Oost J, Backrfen R, Koonin EV (2015) An updated evolutionary classification of CRISPR-Cas system. Nat Rev Microbiol 13:722–736

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mali P, Yang L, Esvelt KM, Aach J, Gulell M, Dicarlo JE, Norville JE, Church GM, Shah SA, Saunders J, Barrangou R, Brouns JJS, Charpentier E (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL (2015) Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 33:538–542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Jiu LI (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23:1233–1236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mojica FJ, Diez-Villasenor C, Soria E, Juez G (2000) Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol 36:244–246

    CAS  PubMed  Google Scholar 

  • Mou H, Keneddy Z, Anderson DG, Hao Y, Wen X (2015) Precision cancer mouse models through genome editing with CRISPR-Cas9. Genome Med 7:53

    PubMed  PubMed Central  Google Scholar 

  • Nelles DA, Fang MY, O’Connell MR, Xu JL, Markmiller SJ, Doudna JA, Yeo GW (2016) Programmable RNA tracking in live cells with CRISPR/Cas9. Cell 165:488–496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohamae N, Ishitani R, Zhang F, Nureki O (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156:935–949

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nunez JK, Kranzusch PJ, Noeske J, Wright AV, Davies CW, Doudna JA, Richards M, Boyaval P, Romero DAM, Harath P (2014) Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nat Struct Mol Biol 21:528–534

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connell MR, Oakes BL, Strenberg SH, East-Seletsky A, Kaplan A, Doudna JA (2014) Progrmmable RNA recognition and cleavage by CRISPR/Cas9. Nature 516:263–266

    PubMed  PubMed Central  Google Scholar 

  • Otieno MO (2015) CRISPR-Cas9 human genome editing: challenges, ethical concerns and implications. J Clin Res Bioeth 6:253

    Google Scholar 

  • Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DA (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31:839–843

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pawluk A, Amrani N, Zhang Y, Garcia B, Reyes YH, Lee J, Edraki A, Shah M, Sontheimer EJ, Maxwell KL, Davidson AR (2016) Naturally occurring off-switches for CRISPR-Cas9. Cell 167:1829–1838

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Pinera P, Kocak DD, Vockley CM, Polstein Thakore PI, Adler AF, Kabadi AM, Leorg LR, Guilak F, Crauford GE, Reddy TE, Gersbach CA (2013) RNA-guided gene activation by CRISPR-Cas9 based transcription factors. Nat Methods 10:973–976

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piatek A, Ali Z, Baazim H, Piatek A, Ali Z, Baazim H, Li L, Abulfaraj A, Al-Shareef S, Aouida M, Mahfouz MM (2014) RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnol J 13:578–589

    PubMed  Google Scholar 

  • Pourcel C, Salvignol G, Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151:653–663

    CAS  PubMed  Google Scholar 

  • Pulla P (2016) India nears putting GM mustard on the table. Science 352:1043

    CAS  PubMed  Google Scholar 

  • Qi LS, Larson MH, Gilbert LA, Dounda AJ, Weisiman JS, Arkia AP (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qin W, Dion SL, Kutny PM, Zhang Y, Cheng AW, Jillette NL, Malhotra A, Geurts AM, Chen YG, Wang H (2015) Efficient CRISPR/Cas9-mediated genome editing in mice by zygote electroporation of nuclease. Genetics 200:423–430

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramakrishna S, Dad ABK, Beloor J, Gopalappa R, Lee SK, Kim H (2014) Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Geno Res 24:1020–1027

    CAS  Google Scholar 

  • Ramanan V, Shlomai A, Cox DBT, Schwartz RE, Michailidis E, Bhatta A, Scott DA, Zhang F, Rice CM, Bhatia SN (2015) CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus. Sci Rep 5:10833

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rauch BJ, Silvis MR, Hultquist JF, Waters CS, McGregor MJ, Krogan NJ, Bondy-Denomy J (2017) Inhibition of CRISPR-Cas9 with bacteriophage proteins. Cell 168:150–158

    CAS  PubMed  Google Scholar 

  • Ron M, Kajala K, Pauluzzi G, Wang D, Reynoso MA, Zumstein K, Garch J, Winter S, Masson H, Inagaki S, Federici F, Sinha N, Deal RB, Bailey-Scrres J (2014) Hairy root transformation using Agrobacterium rhizogenesis as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol 166:455–469

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Rivera FJ, Jack T (2015) Applications of the CRISPR-Cas9 system in cancer biology. Nat Rev Cancer 15:387–395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sander JD, Joung JK (2014) CRISPR-Cas system for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shalem O, Sanjana NE, Hartenian E, DA Hhix Scott, Mikkelsen TS, Heckl D, Edert BL, Root DE, Doench JG, Zhang F (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343:84–87

    CAS  PubMed  Google Scholar 

  • Shalem O, Sanjana NE, Zhang F (2015) High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet 16:299–311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shan Q, Wang Y, Li J, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qin JL, Gao C (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688

    CAS  PubMed  Google Scholar 

  • Shimatani Z, Nishizawa-Yokoi A, Endo M, Tok S, Ternda R (2015) Postive-negative-selection-mediated gene targeting in rice. Front Plant Sci 5:748

    PubMed  PubMed Central  Google Scholar 

  • Shmakov S, Abudayyeh OO, Makarova KS (2015) Discovery and functional characterization of diverse class 2 CRISPR-Cas system. Mol Cell 60:383–397

    Google Scholar 

  • Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351:84–88

    CAS  PubMed  Google Scholar 

  • Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507:62–67

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suda T, Liu D (2007) Hydrodynamic gene delivery: its principles and applications. Mol Ther 15:2063–2069

    CAS  PubMed  Google Scholar 

  • Sun N, Zhao H (2013) Transcription activator-like effector nucleases (TALENs): a highly efficient and versatile tool for genome editing. Biotchnol Bioeng 110:1811–1821

    CAS  Google Scholar 

  • Sun X, Hu Z, Chen R, Jiang Q, Song G, Znang H, Xi Y (2015) Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci Rep 5:10342

    PubMed  PubMed Central  Google Scholar 

  • Sung P, Klein H (2006) Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat Rev Mol Cell Biol 7:739–750

    CAS  PubMed  Google Scholar 

  • Upadhyay SK, Kumar J, Alok A, Tuli R (2013) RNA-guided genome editing for target gene mutations in wheat. G3 3:2233–2238

    PubMed  PubMed Central  Google Scholar 

  • Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PH (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    CAS  PubMed  Google Scholar 

  • Waltz E (2016a) Gene-edited CRISPR mushroom escapes US regulation. Nature 532:293

    CAS  PubMed  Google Scholar 

  • Waltz E (2016b) GM salmon declared fit for dinner plates. Nat Biotechnol 34:7–9

    CAS  PubMed  Google Scholar 

  • Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, Liu YG, Zhao K (2016a) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE 11:e0154027

    PubMed  PubMed Central  Google Scholar 

  • Wang Z, Pan Q, Gendron P, Zhu W, Guo F, Cen S, Wainberg MA, Liang C (2016b) CRISPR/Cas9-derived mutations both inhibit HIV-1 replications and accelerate viral escape. Cell Rep 15:481–489

    CAS  PubMed  Google Scholar 

  • Weinthal D, Tovkach A, Zeevi V, Tzfira T (2010) Genome editing in plant cells by zinc finger nucleases. Trend Plant Sci 15:306–321

    Google Scholar 

  • Wiedenheft B, Zhou K, Jinek M, Coyle SM, Ma W, Doudna JA (2009) Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense. Structure 17:904–912

    CAS  PubMed  Google Scholar 

  • Wu Y, Liang D, Wang Y et al (2013) Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell 13:659–662

    CAS  PubMed  Google Scholar 

  • Wu X, Kriz AJ, Sharp PA (2014) Target specificity of the CRISPR-Cas9 system. Quant Biol 2:59–70

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu R, Li H, Qin R, Wang L, LiL Wei P, Yang J (2014a) Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Rice (N Y) 7:5

    Google Scholar 

  • Xu T, Li Y, Van Nostrand JD, Van Nostrand Joy D, He Zhili, Zhou Jizhong (2014b) Cas9-based tools for targeted genome editing and transcriptional control. App Environ Microbiol 80:1544–1552

    Google Scholar 

  • Yamano T, Nishimasu H, Zetsche B (2016) Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 165:949–962

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Gao P, Rajashankar KR, Patel DJ (2016) PAM-dependent target DNA recognition and cleavage by C2c1 CRISPR-Cas endonuclease. Cell 167:1814–1828

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yin H, Wang H, Shivalila CS, Cheng AC, Shi L, Jaenish R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154:1370–1379

    Google Scholar 

  • Yin K, Han T, Liu G, Chen T, Wang Y, Yu AY, Liu Y (2015) A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing. Sci Rep 5:14926

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymarker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, vander Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Budker V, Wolff JA (1999) High level of foreign gene expression in heptocytes after tail vein injections of naked plasmid DNA. Hum Gene Ther 10:1735–1737

    CAS  PubMed  Google Scholar 

  • Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Zhang H, XuN ZhuJK (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12:797–807

    CAS  PubMed  Google Scholar 

  • Zhou H, Liu B, Weeks DP, Spalding MH, Yang B (2014) Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res 42:10903–10914

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Elizabeth J. Sparke for excellent editing and helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharmendra Pratap.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

The original version of the article was revised due to change in author name from “Kulbhushan Chaudhary” to “Kul Bhushan”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhushan, K., Chattopadhyay, A. & Pratap, D. The evolution of CRISPR/Cas9 and their cousins: hope or hype?. Biotechnol Lett 40, 465–477 (2018). https://doi.org/10.1007/s10529-018-2506-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-018-2506-7

Keywords

Navigation