Skip to main content

Wide Horizons of CRISPR-Cas-Derived Technologies for Basic Biology, Agriculture, and Medicine

  • Protocol
  • First Online:

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

The discovery and subsequent repurposing of the CRISPR (clustered regularly interspaced short palindromic repeats) and Cas proteins (CRISPR-associated proteins) has revolutionized our ability to manipulate DNA and RNA sequences in vitro, ex vivo, and in vivo. In this introductory chapter, we present a brief overview of basics of CRISPR-Cas-mediated genome editing and different orthologues and engineered versions of Cas protein with altered specificity and expanded targetability. More importantly, we comprehensively portray the advances made by developing diverse CRISPR-Cas-based genome modification tools and their application in basic biology, agriculture, and medicine.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Jiang F, Doudna JA (2017) CRISPR–Cas9 structures and mechanisms. Annu Rev Biophys 46:505–529

    CAS  PubMed  Google Scholar 

  2. Molla KA, Yang Y (2019a) CRISPR/Cas-mediated base editing: technical considerations and practical applications. Trends Biotechnol 37:1121–1142

    CAS  PubMed  Google Scholar 

  3. Islam T (2019) CRISPR-Cas technology in modifying food crops. CAB Reviews 14:1–16

    Google Scholar 

  4. Makarova KS, Wolf YI, Koonin EV (2018) Classification and nomenclature of CRISPR-Cas systems: where from here? CRISPR J 1:325–336

    PubMed  PubMed Central  Google Scholar 

  5. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci 109:2579–2586

    Google Scholar 

  8. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE et al (2013) Double nicking by RNA-guided CRISPRCas9 for enhanced genome editing specificity. Cell 154:1380–1389

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ran FA et al (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:186–191

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Edraki A, Mir A, Ibraheim R et al (2019) A compact, high-accuracy Cas9 with a dinucleotide PAM for in vivo genome editing. Mol Cell 73:714–726

    CAS  PubMed  Google Scholar 

  11. Zetsche B, Gootenberg JS, Abudayyeh OO et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Abudayyeh OO, Gootenberg JS, Konermann S et al (2016) C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353:aaf5573

    PubMed  PubMed Central  Google Scholar 

  13. Hou Z, Zhang Y, Propson NE, Howden SE, Chu LF, Sontheimer EJ, Thomson JA (2013) Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci U S A 110:15644–15649

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Müller M, Lee CM, Gasiunas G et al (2016) Streptococcus thermophilus CRISPR-Cas9 systems enable specific editing of the human genome. Mol Ther 24:636–644

    PubMed  PubMed Central  Google Scholar 

  15. Fonfara I, Le Rhun A, Chylinski K, Makarova KS et al (2013) Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res 42:2577–2590

    PubMed  PubMed Central  Google Scholar 

  16. Hirano H, Gootenberg JS, Horii T, Abudayyeh OO, Kimura M, Hsu PD, Nakane T, Ishitani R, Hatada I, Zhang F et al (2016) Structure and engineering of Francisella novicida Cas9. Cell 164:950–961

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM (2013) Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods 10:1116–1121

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Glemzaite M, Balciunaite E, Karvelis T et al (2015) Targeted gene editing by transfection of in vitro reconstituted Streptococcus thermophilus Cas9 nuclease complex. RNA Biol 12:1–4

    PubMed  PubMed Central  Google Scholar 

  19. Kim E, Koo T, Park SW et al (2017) In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat Commun 8:14500

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Harrington LB, Paez-Espino D, Staahl BT et al (2017) A thermostable Cas9 with increased lifetime in human plasma. Nat Commun 8:1424

    PubMed  PubMed Central  Google Scholar 

  21. Karvelis T, Gasiunas G, Young J, Bigelyte G, Silanskas A, Cigan M, Siksnys V (2015) Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements. Genome Biol 16:253

    PubMed  PubMed Central  Google Scholar 

  22. Chatterjee P, Jakimo N, Jacobson JM (2018) Minimal PAM specificity of a highly similar SpCas9 ortholog. Sci Adv 4:eaau0766

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Jakimo N, Chatterjee P, Nip L, Jacobson JM (2018) A Cas9 with complete PAM recognition for adenine dinucleotides. bioRxiv 429654

    Google Scholar 

  24. Tu M, Lin L, Cheng Y et al (2017) A ‘new lease of life’: FnCpf1 possesses DNA cleavage activity for genome editing in human cells. Nucleic Acids Res 45:11295–11304

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Teng F, Cui T, Feng G et al (2018) Repurposing CRISPR-Cas12b for mammalian genome engineering. Cell discovery 4:63

    PubMed  PubMed Central  Google Scholar 

  26. Strecker J, Ladha A, Gardner Z, Schmid-Burgk JL, Makarova KS, Koonin EV, Zhang F (2019a) RNA-guided DNA insertion with CRISPR-associated transposases. Science 365(6448):48–53

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Strecker J, Jones S, Koopal B et al (2019b) Engineering of CRISPR-Cas12b for human genome editing. Nat Commun 10:212

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu JJ, Orlova N, Oakes BL et al (2019) CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 566:218–223

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Harrington LB, Burstein D, Chen JS et al (2018) Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 362:839–842

    CAS  PubMed  PubMed Central  Google Scholar 

  30. East-Seletsky A, O’Connell MR, Knight SC et al (2016) Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 538:270–273

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Abudayyeh OO, Gootenberg JS, Essletzbichler P et al (2017) RNA targeting with CRISPR–Cas13. Nature 550:280–284

    PubMed  PubMed Central  Google Scholar 

  32. Smargon AA, Cox DB, Pyzocha NK, Zheng K et al (2017) Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28. Mol Cell 65:618–630

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Slaymaker IM, Mesa P, Kellner MJ et al (2019) High-resolution structure of Cas13b and biochemical characterization of RNA targeting and cleavage. Cell Rep 26:3741–3751

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Molla KA, Yang Y (2019b) Predicting CRISPR/Cas9-induced mutations for precise genome editing. Trends Biotechnol S0167-7799:30206–30209

    Google Scholar 

  35. Jinek M, Jiang F, Taylor DW et al (2014) Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343:1247997

    PubMed  PubMed Central  Google Scholar 

  36. Mitsunobu H, Teramoto J, Nishida K, Kondo A et al (2017) Beyond native Cas9: manipulating genomic information and function. Trends Biotechnol 35:983–996

    CAS  PubMed  Google Scholar 

  37. Kleinstiver BP, Prew MS, Tsai SQ, Nguyen NT, Topkar VV, Zheng Z, Joung JK (2015) Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol 33:1293–1298

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hu JH, Miller SM, Geurts MH et al (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556:57–63

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Nishimasu H, Shi X, Ishiguro S et al (2018) Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361:1259–1262

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kleinstiver BP, Pattanayak V, Prew MS et al (2016) High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:490–495

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kleinstiver BP, Prew MS, Tsai SQ et al (2015a) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523:481–485

    PubMed  PubMed Central  Google Scholar 

  43. Anders C, Bargsten K, Jinek M (2016) Structural plasticity of PAM recognition by engineered variants of the RNA-guided endonuclease Cas9. Mol Cell 61:895–902

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351:84–88

    CAS  PubMed  Google Scholar 

  45. Walton RT, Christie KA, Whittaker MN, Kleinstiver BP (2020) Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science:eaba8853. https://doi.org/10.1126/science.aba8853

  46. Vakulskas CA, Dever DP, Rettig GR et al (2018) A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat Med 24:1216–1224

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen JS, Dagdas YS, Kleinstiver BP et al (2017) Enhanced proofreading governs CRISPR–Cas9 targeting accuracy. Nature 550:407–410

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Casini A, Olivieri M, Petris G et al (2018) A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nat Biotechnol 36:265–271

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhong Z, Zhang Y, You Q et al (2018) Plant genome editing using FnCpf1 and LbCpf1 nucleases at redefined and altered PAM sites. Mol Plant 11:999–1002

    CAS  PubMed  Google Scholar 

  50. Gao L, Cox DB, Yan WX et al (2017) Engineered Cpf1 variants with altered PAM specificities. Nat Biotechnol 35:789–792

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Tóth E, Czene BC, Kulcsár PI et al (2018) Mb-and FnCpf1 nucleases are active in mammalian cells: activities and PAM preferences of four wild-type Cpf1 nucleases and of their altered PAM specificity variants. Nucleic Acids Res 46:10272–10285

    PubMed  PubMed Central  Google Scholar 

  52. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Xie K, Minkenberg B, Yang Y (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci 112:3570–3575

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Bhowmik P, Hassan MM, Molla K, Rahman M, Islam MT (2019) Application of CRISPR-Cas genome editing tools for the improvement of plant abiotic stress tolerance. In: Hasanuzzaman M, Nahar K, Fujita M, Oku H, Islam MT (eds) Approaches for enhancing abiotic stress tolerance in plants. CRC Press, New York, pp 459–472

    Google Scholar 

  55. Haque E, Taniguchi H, Hassan MM, Bhowmik P, Karim MR, Smiech M et al (2018) Application of CRISPR/Cas9 genome editing technology for the improvement of crops cultivated in tropical climates: recent progress, prospects, and challenges. Front Plant Sci 9:617

    PubMed  PubMed Central  Google Scholar 

  56. Wang D, Zhang F, Gao G (2020) CRISPR-based therapeutic genome editing: strategies and in vivo delivery by AAV vectors. Cell 181(1):136–150

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK (2013) CRISPR RNA–guided activation of endogenous human genes. Nat Methods 10:977–999

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Perez-Pinera P, Kocak DD, Vockley CM et al (2013) RNA-guided gene activation by CRISPR-Cas9–based transcription factors. Nat Methods 10:973–976

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Gilbert LA, Larson MH, Morsut L et al (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–451

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Adli M (2018) The CRISPR tool kit for genome editing and beyond. Nat Commun 9:1–13

    CAS  Google Scholar 

  61. Doench JG (2018) Am I ready for CRISPR? A user’s guide to genetic screens. Nat Rev Genet 19:67–80

    CAS  PubMed  Google Scholar 

  62. Hilton IB, D’ippolito AM, Vockley CM et al (2015) Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33:510–517

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu XS, Wu H, Krzisch M et al (2018) Rescue of fragile X syndrome neurons by DNA methylation editing of the FMR1 gene. Cell 172:979–992

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu XS, Wu H, Ji X et al (2016) Editing DNA methylation in the mammalian genome. Cell 167:233–247

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Van Steensel B, Belmont AS (2017) Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell 169:780–791

    PubMed  PubMed Central  Google Scholar 

  66. Wang J, Meng X, Hu X, Sun T, Li J, Wang K, Yu H (2019) xCas9 expands the scope of genome editing with reduced efficiency in rice. Plant Biotechnol J 17:709–711

    PubMed  PubMed Central  Google Scholar 

  67. Morgan SL, Mariano NC, Bermudez A et al (2017) Manipulation of nuclear architecture through CRISPR-mediated chromosomal looping. Nat Commun 8:15993

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hao N, Shearwin KE, Dodd IB et al (2017) Programmable DNA looping using engineered bivalent dCas9 complexes. Nat Commun 8:1628

    PubMed  PubMed Central  Google Scholar 

  69. Chen B, Guan J, Huang B (2016) Imaging specific genomic DNA in living cells. Annu Rev Biophys 45:1–23

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ma H, Naseri A, Reyes-Gutierrez P, Wolfe SA, Zhang S, Pederson T et al (2015) Multicolor CRISPR labeling of chromosomal loci in human cells. Proc Natl Acad Sci 112:3002–3007

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Qin P, Parlak M, Kuscu C, Bandaria J, Mir M, Szlachta K et al (2017) Live cell imaging of low-and non-repetitive chromosome loci using CRISPR-Cas9. Nat Commun 8:14725

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Yang LZ, Wang Y, Li SQ et al (2019) Dynamic imaging of RNA in living cells by CRISPR-Cas13 systems. Mol Cell 76:981–997

    CAS  PubMed  Google Scholar 

  73. Wu X, Mao S, Ying Y, Krueger CJ, Chen AK (2019) Progress and challenges for live-cell imaging of genomic loci using CRISPR-based platforms. Genomics Proteomics Bioinformatics 17:119–128

    PubMed  PubMed Central  Google Scholar 

  74. Gaudelli NM, Komor AC, Rees HA et al (2017) Programmable base editing of A• T to G• C in genomic DNA without DNA cleavage. Nature 551:464–471

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR et al (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Nishida K, Arazoe T, Yachie N et al (2016) Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353:aaf8729

    PubMed  Google Scholar 

  77. Abudayyeh OO, Gootenberg JS, Franklin B et al (2019) A cytosine deaminase for programmable single-base RNA editing. Science 365:382–386

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Cox DB, Gootenberg JS, Abudayyeh OO et al (2017) RNA editing with CRISPR-Cas13. Science 358:1019–1027

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Rees HA, Liu DR (2018) Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 19:770–788

    CAS  PubMed  PubMed Central  Google Scholar 

  80. O’Connell MR, Oakes BL, Sternberg SH, East-Seletsky A, Kaplan M, Doudna JA (2014) Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 516(7530):263–266

    PubMed  PubMed Central  Google Scholar 

  81. Strutt SC, Torrez RM, Kaya E, Negrete OA, Doudna JA (2018) RNA-dependent RNA targeting by CRISPR-Cas9. Elife 7:e32724. https://doi.org/10.7554/eLife.32724

    Article  PubMed  PubMed Central  Google Scholar 

  82. Price AA, Sampson TR, Ratner HK, Grakoui A, Weiss DS (2015) Cas9-mediated targeting of viral RNA in eukaryotic cells. Proc Natl Acad Sci 112(19):6164–6169

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Makarova KS, Wolf YI, Alkhnbashi OS et al (2015) An updated evolutionary classification of CRISPR–Cas systems. Nat Rev Microbiol 13:722–736

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Shmakov S, Sergey AS, Scott D, Cox D, Pyzocha N, Yan W, Abudayyeh OO et al (2017) Diversity and evolution of class 2 CRISPR–Cas systems. Nat Rev Microbiol 15:169–182

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Klompe SE, Vo PL, Halpin-Healy TS, Sternberg SH (2019) Transposon-encoded CRISPR–Cas systems direct RNA-guided DNA integration. Nature 571:219–225

    CAS  PubMed  Google Scholar 

  86. Peters JE, Makarova KS, Shmakov S, Koonin EV et al (2017) Recruitment of CRISPR-Cas systems by Tn7-like transposons. Proc Natl Acad Sci 114:E7358–E7366

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Huang TK, Puchta H (2019) CRISPR/Cas-mediated gene targeting in plants: finally a turn for the better for homologous recombination. Plant Cell Rep 38:443–453

    CAS  PubMed  Google Scholar 

  88. Yeh CD, Richardson CD, Corn JE (2019) Advances in genome editing through control of DNA repair pathways. Nat Cell Biol 21:1468–1478

    CAS  PubMed  Google Scholar 

  89. Anzalone AV, Randolph PB, Davis JR et al (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:149–157

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Chen JS, Ma E, Harrington LB et al (2018) CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360:436–439

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Gootenberg JS, Abudayyeh OO, Lee JW et al (2017) Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356:438–442

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Gootenberg JS, Abudayyeh OO, Kellner MJ et al (2018) Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360:439–444

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Myhrvold C, Freije CA, Gootenberg JS et al (2018) Field-deployable viral diagnostics using CRISPR-Cas13. Science 360:444–448

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Freije CA, Myhrvold C, Boehm CK et al (2019) Programmable inhibition and detection of RNA viruses using Cas13. Mol Cell 76:826–837

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Scudellari M (2019) Self-destructing mosquitoes and sterilized rodents: the promise of gene drives. Nature 571:160–162

    CAS  PubMed  Google Scholar 

  96. Kyrou K, Hammond AM, Galizi R et al (2018) A CRISPR–Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat Biotechnol 36:1062–1066

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Grunwald HA, Gantz VM, Poplawski G et al (2019) Super-Mendelian inheritance mediated by CRISPR–Cas9 in the female mouse germline. Nature 566:105–109

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kutubuddin A. Molla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Molla, K.A., Karmakar, S., Islam, M.T. (2020). Wide Horizons of CRISPR-Cas-Derived Technologies for Basic Biology, Agriculture, and Medicine. In: Islam, M.T., Bhowmik, P.K., Molla, K.A. (eds) CRISPR-Cas Methods . Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0616-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0616-2_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0615-5

  • Online ISBN: 978-1-0716-0616-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics