Skip to main content

Advertisement

Log in

New approaches to antibiotic discovery

  • REVIEW
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

New antibiotics are urgently required by human medicine as pathogens emerge with developed resistance to almost all antibiotic classes. Pioneering approaches, methodologies and technologies have facilitated a new era in antimicrobial discovery. Innovative culturing techniques such as iChip and co-culturing methods which use ‘helper’ strains to produce bioactive molecules have had notable success. Exploiting antibiotic resistance to identify antibacterial producers performed in tandem with diagnostic PCR based identification approaches has identified novel candidates. Employing powerful metagenomic mining and metabolomic tools has identified the antibiotic’ome, highlighting new antibiotics from underexplored environments and silent gene clusters enabling researchers to mine for scaffolds with both a novel mechanism of action and also few clinically established resistance determinants. Modern biotechnological approaches are delivering but will require support from government initiatives together with changes in regulation to pave the way for valuable, efficacious, highly targeted, pathogen specific antimicrobial therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdelmohsen UR, Yang C, Horn H, Hajjar D, Ravasi T, Hentschel U (2014) Actinomycetes from Red Sea sponges: sources for chemical and phylogenetic diversity. Mar Drugs 12:2771–2789

    Article  PubMed  PubMed Central  Google Scholar 

  • Adamantia L, Antoni T (2016) Pharmacodynamics, pharmacokinetics and clinical efficacy of telavancin in the treatment of pneumonia. Expert Opin Drug Metab 12:803–812

    Article  CAS  Google Scholar 

  • Allen N, Nicas T (2003) Mechanism of action of oritavancin and related glycopeptide antibiotics. FEMS Microbiol Rev 26:511–532

    Article  CAS  PubMed  Google Scholar 

  • Andersson DI, Hughes D (2014) Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol 12:465–478

    Article  CAS  PubMed  Google Scholar 

  • Baltz R (2008) Renaissance in antibacterial discovery from actinomycetes. Curr Opin Pharmacol 8:557–563

    Article  CAS  PubMed  Google Scholar 

  • Banskota A, Mcalpine JB, Sørensen D, Ibrahim A, Aouidate M, Piraee M, Alarco AM, Farnet CM, Zazopoulos E (2006a) Genomic analyses lead to novel secondary metabolites. J Antibiot 59:533–542

    Article  CAS  PubMed  Google Scholar 

  • Banskota A, Mcalpine JB, Sørensen D, Aouidate M, Piraee M, Alarco AM, Omura S, Shiomi K, Farnet CM, Zazopoulos E (2006b) Isolation and identification of three new 5-alkenyl-3,3(2 h)-furanones from two Streptomyces species using a genomic screening approach. J Antibiot 59:168–176

    Article  CAS  PubMed  Google Scholar 

  • Bérdy J (2012) Thoughts and facts about antibiotics: where are we now and where are we heading. J Antibiot 65:385–395

    Article  PubMed  Google Scholar 

  • Berendonk T, Manaia CM, Merlin C, Fatta-Kassinos D et al (2015) Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol 13:310–317

    Article  CAS  PubMed  Google Scholar 

  • Brakhage AA (2013) Regulation of fungal secondary metabolism. Nat Rev Microbiol 11:21–32

    Article  CAS  PubMed  Google Scholar 

  • Butler M, Blaskovich M, Cooper M (2017) Antibiotics in the clinical pipeline at the end of 2015. J Antibiot 70:3–24

    Article  CAS  PubMed  Google Scholar 

  • Chain E, Florey HW, Adelaide MB, Gardner AD, Heatley NG, Jennings MA, Orr-Ewing J, Sanders AG (1940) Penicillin as a chemotherapeutic agent. Lancet 236:226–228

    Article  Google Scholar 

  • Chilton C, Crowther GS, Todhunter SL, Nicholson S, Freeman J, Chesnel L, Wilcox MH (2014) Efficacy of surotomycin in an in vitro gut model of Clostridium difficile infection. J Antimicrob Chemother 69:2426–2433

    Article  CAS  PubMed  Google Scholar 

  • Christina A, Christapher V, Bhore S (2013) Endophytic bacteria as a source of novel antibiotics: an overview. Pharmacogn Rev 7:11–16

    Article  PubMed  PubMed Central  Google Scholar 

  • Craft J, Moriarty SR, Clark K, Scott D, Degenhardt TP, Still JG, Corey GR, Das A, Fernandes P (2011) A randomized, double-blind phase 2 study comparing the efficacy and safety of an oral fusidic acid loading-dose regimen to oral linezolid for the treatment of acute bacterial skin and skin structure infections. Clin Infect Dis 52:520–526

    Article  Google Scholar 

  • Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Costa V, King CE, Kalan L, Morar M et al (2011) Antibiotic resistance is ancient. Nature 477:457–461

    Article  PubMed  Google Scholar 

  • Diacon A, Dawson R, von Groote-Bidlingmaier F, Symons G et al (2012) 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifl oxacin combinations: a randomised trial. Lancet 380:986–993

    Article  CAS  PubMed  Google Scholar 

  • Dunn WB, Ellis DI (2005) Metabolomics: current analytical platforms and methodologies. Trends Anal Chem 24:285–294

    Article  CAS  Google Scholar 

  • Fortman JL, Mukhopadhyay A (2016) The future of antibiotics: emerging technologies and stewardship. Trends Microbiol 24:515–517

    Article  CAS  PubMed  Google Scholar 

  • Freeman J, Baines S, Jabes D, Wilcox M (2005) Comparison of the efficacy of ramoplanin and vancomycin in both in vitro and in vivo models of clindamycin-induced Clostridium difficile infection. J Antimicrob Chemother 56:717–725

    Article  CAS  PubMed  Google Scholar 

  • Gavrish E, Sit CS, Cao S, Kandror O et al (2014) Lassomycin, a ribosomally synthesized cyclic peptide, kills Mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2. Chem Biol 21:509–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillespie DE, Brady SF, Bettermann AD, Cianciotto NP, Liles MR, Rondon MR, Clardy J, Goodman RM, Handelsman J (2002) Isolation of antibiotics turbomycin a and B from a metagenomic library of soil microbial DNA. Appl Environ Microbiol 68:4301–4306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hancock RE (2015) Rethinking the antibiotic discovery paradigm. EBioMedicine 2:629–630

    Article  PubMed  PubMed Central  Google Scholar 

  • Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J (2014) Clinical development success rates for investigational drugs. Nat Biotechnol 32:40–51

    Article  CAS  PubMed  Google Scholar 

  • Helaly S, Goodfellow M, Zinecker H, Imhoff JF, Süssmuth RD, Fiedler HP (2013) Warkmycin, a novel angucycline antibiotic produced by Streptomyces sp Acta 2930. J Antibiot 66:669–674

    Article  CAS  PubMed  Google Scholar 

  • Imhoff J, Labes A, Wiese J (2011) Bio-mining the microbial treasures of the ocean: new natural products. Biotechnol Adv 29:468–482

    Article  CAS  PubMed  Google Scholar 

  • Johnston CW, Magarvey NA (2015) Untwisting the antibiotic’ome. Nat Chem Biol 11:177–178

    Article  CAS  PubMed  Google Scholar 

  • Kaeberlein T, Lewis K, Epstein S (2002) Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296:1127–1129

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Choi Y, Verpoorte R (2011) NMR-based plant metabolomics: where do we stand, where do we go? Trends Biotechnol 29:267–275

    Article  CAS  PubMed  Google Scholar 

  • Kudalkar P, Strobel G, Riyaz-Ul-Hassan S, Geary B, Sears J (2012) Muscodor sutura, a novel endophytic fungus with volatile antibiotic activities. Mycoscience 53:319–325

    Article  CAS  Google Scholar 

  • Laxminarayan R, Duse A, Wattal C, Zaidi AK et al (2013) Antibiotic resistance—The need for global solutions. Lancet 13:1057–1098

    Article  PubMed  Google Scholar 

  • Lewis K (2010) Persister cells. Annu Rev Microbiol 64:357–372

    Article  CAS  PubMed  Google Scholar 

  • Lewis K (2013) Platforms for antibiotic discovery. Nat Rev Drug Discov 12:371–387

    Article  CAS  PubMed  Google Scholar 

  • Lin L, Nonejuie P, Munguia J, Hollands A et al (2015) Azithromycin synergizes with cationic antimicrobial peptides to exert bactericidal and therapeutic activity against highly multidrug-resistant gram-negative bacterial pathogens. EBioMedicine 2:690–698

    Article  PubMed  PubMed Central  Google Scholar 

  • Ling LL, Schneider T, Peoples AJ, Spoering AL et al (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517:455–459

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang Y, Walsh TR, Yi LX et al (2015) Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet 16:161–168

    Article  CAS  PubMed  Google Scholar 

  • Livermore D, Mushtaq S, Warner M, Woodford N (2009) Activity of oxazolidinone TR-700 against linezolid-susceptible and resistant staphylococci and enterococci. J Antimicrob Chemother 63:713–715

    Article  CAS  PubMed  Google Scholar 

  • Locher H, Seiler P, Chen X, Schroeder S et al (2014) In vitro and in vivo antibacterial evaluation of cadazolid, a new antibiotic for treatment of Clostridium difficile infections. Antimicrob Agents Chemother 58:892–900

    Article  PubMed  PubMed Central  Google Scholar 

  • Machado H, Sonnenschein E, Melchiorsen J, Gram L (2015) Genome mining reveals unlocked bioactive potential of marine Gram-negative bacteria. BMC Genomics 16:158

    Article  PubMed  PubMed Central  Google Scholar 

  • Margassery L, Kennedy J, O’Gara F, Dobson AD, Morrissey JP (2012) Diversity and antibacterial activity of bacteria isolated from the coastal marine sponges Amphilectus fucorum and Eurypon major. Lett Appl Microbiol 55:2–8

    Article  CAS  PubMed  Google Scholar 

  • McAlpine J, Bachmann BO, Piraee M, Tremblay S, Alarco AM, Zazopoulos E, Farnet CM (2005) Microbial genomics as a guide to drug discovery and structural elucidation: eCO-02301, a novel antifungal agent, as an example. J Nat Prod 68:493–496

    Article  CAS  PubMed  Google Scholar 

  • McGann P, Snesrud E, Maybank R, Corey B, Ong AC, Clifford R, Hinkle M, Whitman T, Lesho E, Schaecher KE (2016) Escherichia coli harbouring mcr-1 and blaCTX-M on a novel IncF plasmid: first report of mcr-1 in the United States. Antimicrob Agents Chemother 60:4420–4421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moloney MG (2016) Natural products as a source for novel antibiotics. Trends Pharmacol Sci 37:689–701

    Article  CAS  PubMed  Google Scholar 

  • Nichols D, Cahoon N, Trakhtenberg EM, Pham L et al (2010) Use of Ichip for high-throughput in situ cultivation of ‘uncultivable’ microbial species. Appl Environ Microbiol 76:2445–2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JW, Nam SJ, Yoon YJ (2016) Enabling techniques in the search for new antibiotics: combinatorial biosynthesis of sugar-containing antibiotics. Biochem Pharmacol. doi:10.1016/j.bcp.2016.10.009

    PubMed Central  Google Scholar 

  • Rashad F, Fathy H, El-Zayat A, Elghonaimy A (2015) Isolation and characterization of multifunctional Streptomyces species with antimicrobial, nematicidal and phytohormone activities from marine environments in Egypt. Microbiol Res 175:34–47

    Article  CAS  PubMed  Google Scholar 

  • Ravikumar S, Thajuddin N, Suganthi P, Inbaneson SJ, Vinodkumar T (2010) Bioactive potential of seagrass bacteria against human bacterial pathogens. J Environ Biol 31:387–389

    CAS  PubMed  Google Scholar 

  • Rex JH (2014) ND4BB: addressing the antimicrobial resistance crisis. Nat Rev Microbiol 12:231–232

    Article  CAS  Google Scholar 

  • Selvin J, Shanmughapriya S, Gandhimathi R, Seghal Kiran G, Rajeetha Ravji T, Natarajaseenivasan K, Hema TA (2009) Optimization and production of novel antimicrobial agents from sponge associated marine actinomycetes Nocardiopsis dassonvillei MAD08. Appl Microbiol Biotechnol 83:435–445

    Article  CAS  PubMed  Google Scholar 

  • Shukla ST, Habbu PV, Kulkarni VH, Jagadish KS, Pandey AR, Sutariya VN (2014) Endophytic microbes: a novel source for biologically/pharmacologically active secondary metabolites. Asian J Pharmacol Toxicol 2:1–16

    Google Scholar 

  • Sweeney P, Murphy C, Caffrey P (2015) Exploiting the genome sequence of Streptomyces nodosus for enhanced antibiotic production. Appl Microbiol Biotechnol 100:1285–1295

    Article  Google Scholar 

  • Tanvir R, Sajid I, Hasnain S (2014) Biotechnological potential of endophytic anctinomycetes associated with Asteracae plants: isolation, biodiversity and bioactivities. Biotechnol Lett 36:767–773

    Article  CAS  PubMed  Google Scholar 

  • Thaker M, Wang W, Spanogiannopoulos P, Waglechner N, King AM, Medina R, Wright GD (2013) Identifying producers of antibacterial compounds by screening for antibiotic resistance. Nature Biotechnol 31:922–927

    Article  CAS  Google Scholar 

  • Tommasi R, Brown DG, Walkup GK, Manchester JI, Miller AA (2015) ESKAPEing the labyrinth of antibacterial discovery. Nat Rev Drug Discov 14:529–542

    Article  CAS  PubMed  Google Scholar 

  • Ueda K, Beppu K (2016) Antibiotics in microbial co-culture. J Antibiotic. doi:10.1038/ja.2016.127

    Google Scholar 

  • Venter JC, Adams MD, Myers EW, Li PW et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  CAS  PubMed  Google Scholar 

  • Wang GY, Graziani E, Waters B, Pan W, Li X, McDermott J, Meurer G, Saxena G, Andersen RJ, Davies J (2000) Novel natural products from soil DNA libraries in a streptomycete host. Org Lett 2:2401–2404

    Article  CAS  PubMed  Google Scholar 

  • Wencewicz TA (2016) New antibiotics from Nature’s chemical inventory. Bioorg Med Chem 24:6227–6252

    Article  CAS  PubMed  Google Scholar 

  • Wilson MC, Piel J (2013) Metagenomic approaches for exploiting uncultivated bacteria as a resource for novel biosynthetic enzymology. Chem Biol 20:636–647

    Article  CAS  PubMed  Google Scholar 

  • Wilson MC, Mori T, Rückert C, Uria AR et al (2014) An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506:58–62

    Article  CAS  PubMed  Google Scholar 

  • Wong FT, Khosla C (2012) Combinatorial biosynthesis of polyketides–a perspective. Curr Opin Chem Biol 16:117–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright G (2013) Q&A: antibiotic resistance: what more do we know and what more can we do? BMC Biology 11:1–4

    Article  Google Scholar 

  • Wu C, Kim H, van Wezel G, Choi Y (2015) Metabolomics in the natural products field—A gateway to novel antibiotics. Drug Discov Today Technol 13:11–17

    Article  PubMed  Google Scholar 

  • Zhu F, Chen G, Chen X, Huang M, Wan X (2011) Aspergicin, a new antibacterial alkaloid produced by mixed fermentation of two marine-derived mangrove epiphytic fungi. Chem Nat Compd 47:767–769

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. B. Brady.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kealey, C., Creaven, C.A., Murphy, C.D. et al. New approaches to antibiotic discovery. Biotechnol Lett 39, 805–817 (2017). https://doi.org/10.1007/s10529-017-2311-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-017-2311-8

Keywords

Navigation